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In this article we share some ideas about how socio-ecological thinking 

intersects with algorithmic thinking, in mathematics education. Socio-

ecological approaches to mathematics education have, at their centre, a 

radical idea that there is no separation between nature and culture, or body 

and mind, or information and matter. Such approaches provoke questions 

about how our research concerns might alter if we take seriously the pre-

carious nature of the sustainability of life on the planet. We illustrate such 

a re-working of research concerns by considering algorithmic thinking. 

Algorithmic thinking, as we understand it, involves not only performing 

and designing, but also analysing and comparing algorithms. One way its 

research and teaching might alter, in light of questions of sustainability, is 

to include reflective knowing of algorithms. 
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Introduction 

This article shares some emergent thinking as we grapple with what climate chaos, 

political instability and war might mean for the future of research, teaching and learn-

ing of mathematics in schools and universities. In what follows, we first set out what 

we mean by socio-ecological thinking, and then do the same for algorithmic thinking. 

Finally, we consider how the teaching of and research into algorithmic thinking might 

alter in light of socio-ecological precarity. We conclude by inviting other scholars to 

join the conversation in re-evaluating teaching and research concerns in different are-

as of mathematics education. 

A socio-ecological approach to mathematics education  

The term “socio-ecology” is an old one, being used by Bronfenbrenner (1977) and 

others. It has been re-kindled recently (e.g., see Coles, 2022) and been used to point 

to: (a) how mathematics education research has tended to take the living world as a 

fixed background for concerns; (b) how social and ecological concerns cannot be sep-

arated. Thinking with the socio-ecological, invites attention to research areas that are 

perhaps rarely considered, such as, how might mathematics teaching change if the air 

in a classroom is highly polluted? Or, what priorities for mathematics education exist 

when teaching in a refugee camp?  

More philosophically, a socio-ecological perspective might alert us to the ab-

sence of considerations about the ecology of the planet, in many constructivist and 

socio-cultural studies in mathematics education. Indeed, it is only relatively recently 

that work within critical mathematics education has embraced, e.g., environmental 

justice (Skovsmose, 2023) as a core aim. One aim of eliding the social and ecological 

in the phrase "socio-ecological” is to suggest that nature and culture are not separate 
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realms (Kirby, 2011), or that mind and body, or information and matter, cannot be 

separated. We are interested in what widening our scope, to consider broader socio-

ecological issues, does to considerations of the future of mathematics education. We 

illustrate the potential for such thinking with the field of algorithmic thinking.  

Algorithms and algorithmic thinking 

This section aims to clarify the terms “algorithm” and “algorithmic thinking”—a rela-

tively new area of research, relating to (but more general than) combinatorial think-

ing. Algorithms are a special way of solving problems (e.g., see Maurer 1998). Con-

sider, for example, the standard algorithm for calculating the multiplication of two 

natural or decimal numbers (“long multiplication”), of the algorithm for checking the 

primality of a natural number (“trial division”) or for generating all possible combina-

tions of different properties. Looking across these cases, we propose an algorithm: 

(1)   consists of a predefined and fixed sequence of finitely many instructions; 

(2)   solves a class of (in)finitely many individual problems (“instances”); 

(3)  takes a finite number of steps to solve the problem; and does so systematically. 

The first property (1) ensures that the sequence of instructions is already determined 

before they are executed (and it is not, for example, changed depending on the in-

stance), the second property (2) ensures that the algorithm does not solve a single in-

stance but the generalised problem (not “12 ÷ 3= ?”, but “a ÷ b = ?”), and the third 

property (3) states that the algorithm returns the correct solution after a finite number 

of steps (and thus in finite time). The fact that it must proceed systematically to do so 

is rarely explicitly stated (e.g., see Maurer 1998). This could be due to the fact that, in 

order to find the correct solution in a finite number of steps, an algorithm necessarily 

has to proceed in a systematic way. For example, if we were to generate all possible 

combinations and proceed unsystematically, we would not know at any time whether 

we have already found all combinations. As a result, the search would require an un-

limited number of steps and would therefore take an unlimited amount of time. 

Moreover, some authors emphasise the relationship between the number of in-

structions (of the algorithm) and the number of steps (in its execution) (Modeste, 

2012). Thus, in addition to properties (1) to (3), every algorithm:  

(4)  works out the solution in a number of steps that depends on the “size” of the 

elements of the actual instance. 

This fourth property (4) states that an algorithm for solving an instance usually exe-

cutes more or fewer steps than it contains instructions, achieved by structures such as 

iterations (loops or repeating steps) and branchings (if / then / else conditions). This 

means that formulas (such as the quadratic formula) would not yet be considered al-

gorithms (Modeste, 2012): they do not satisfy property (4), since the number of steps 

in computing the solution calculation does not depend on whether the coefficients of 

the quadratic equation to be solved are “large” or “small”. Furthermore, property (4) 

makes it clear that comparisons such as “algorithms are like recipes” are not appropri-

ate. Recipes do indeed consist of a fixed sequence of a finite number of instructions 

(which, if executed correctly, lead to a “solution”, the menu). However, since they 

contain no iterations or branchings, they should be considered as procedures or strate-

gies and not as algorithms in the strict sense. 

Another debate is about equating algorithms with computer programmes 

(Modeste speaks of the “amalgamation of algorithm with program” (2012, pp. 127–

129)). Algorithms can be implemented in a programming language in order to be run 

as a programme on a computer. However, mathematics was concerned with algo-
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rithms long before there were programming languages and computers. Furthermore, 

not every programme is based on an algorithm in the strict sense, for some applica-

tions it is virtually essential that a programme does not terminate (e.g., controlling 

traffic lights). The fact that, apart from everyday language, we do not have a standard-

ized language for representing algorithms could be (partly) responsible for equating 

algorithms with programmes. It is therefore quite natural to use a notation from the 

computer environment (programming language, flowchart, etc.). 

Algorithms in schools and curricula 

Algorithms are a great thing from a mathematical point of view: with their help, tasks 

that initially appear as challenging problems become mere routine exercises. Instead 

of concentrating on solving a problem and struggling with the process, we can focus 

on other points, such as the follow-up question, etc.  

In the school context, however, this advantage can be a double-edged sword: 

on the one hand, algorithms make the solution process easier; on the other hand, stu-

dents do not need to understand why an algorithm solves the problem, how it works, 

if they simply follow its rules in order to arrive at the solution. In the 1980s, empirical 

studies began to discredit the learning (and teaching) of algorithms in primary 

schools. The term “algorithmic” was increasingly equated with “rote learning” and 

used in a pejorative way (e.g., algorithmic as the opposite of conceptual). This was 

probably also the reason why some countries removed long division and other stand-

ard algorithms from the curriculum (Fan & Bokhove, 2014). But is this not throwing 

the baby out with the bathwater? Is the problem not less with the algorithms them-

selves than with the way we teach them? What might it mean to have “deep 

knowledge of algorithms” (ibid., p. 484) rather than just rote knowledge? 

Algorithmic thinking: a revaluation 

In the context of teaching and learning mathematics, we often speak of “mathematical 

thinking”, more specifically of “algebraic thinking”, “functional thinking” or “combi-

natorial thinking”. The addition of “thinking” also gives the adjective “algorithmic” a 

new lustre: “algorithmic thinking”. Last but not least, the educational policy demand 

for the development of “computational thinking” in (computing) education is proba-

bly also responsible for the fact that “algorithmic thinking” now appears as an objec-

tive in education plans (e.g., OECD, 2023).  

Despite this, there seems to be little consensus on what algorithmic thinking 

can and should mean in the classroom. Like linguistically related constructs such as 

algebraic or functional thinking, algorithmic thinking could be understood as a human 

activity that is “typical” for working with algorithms, for solving problems in an algo-

rithmic way. This circumscription shifts the question about constitutive elements of 

algorithmic thinking to the question of typical practices with algorithms. We will now 

briefly present four relevant algorithmic practices: 

(1) Probably the most common classroom practice with algorithms is their per-

forming: algorithms are presented step by step by the teacher and imitated by 

the students until they can perform them at a good speed and error-free. 

(2)  A second form of practice is designing and developing algorithms. In compu-

ting education, design practices would be decomposing, abstracting, debug-

ging etc. In the context of primary school arithmetic lessons, some educators 

may instead suggest that pupils develop informal or their own idiosyncratic 
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strategies, or that they reinvent an existing algorithm (for examples, see 

Freudenthal 2002, pp. 57–61).  

Since “performing” refers to given algorithms and “developing” to algorithms that are 

not given—and therefore do not (yet) exist for students— the two practices can be 

understood as poles of a continuum. We can at least think of two other practices: 

(3) A third form of algorithmic practice can be summarized under the notion of 

analysing, such as analysing the effectiveness, efficiency or limitations of a 

present algorithm: for what reasons does this algorithm actually solve the 

problem it promises to solve? Does the algorithm solve the problem with the 

minimum number of computational steps, in the minimum amount of space? 

Which instances do not belong to the class that the algorithm solves? While 

mathematics is concerned with proving the effectiveness of algorithms, com-

puter science is interested in the question of absolute efficiency (complexity 

theory). At least relative efficiency can be analysed in mathematics class-

rooms: How can you add a series of consecutive numbers more efficiently than 

by summing the numbers by magnitude? How can we check the primality of a 

natural number n more efficiently than by trial division up to n–1? 

(4) Another, fourth form of algorithmic practice, is comparing (Weber, 2019). 

Different algorithms that solve the same problem can be compared with each 

other (e.g., the traditional right-to-left multiplication with left-to-right multi-

plication, synthetic division with Horner’s method, an idiosyncratic approach 

with the standard algorithm): Which algorithm is shorter? Which one is faster? 

Which algorithm is clearer (for us)? Or we compare different representations 

of the same algorithm (e.g., symbolic programming language versus diagram-

matic flowchart): Which representation makes which aspects of the algorithm 

explicit, which ones remain implicit? In special cases where two problems are 

mathematically related (e.g., division of numbers and division of polynomials, 

long division and logarithms (Weber, 2019)), students can compare the simi-

larities and differences of the related algorithms. 

These last two algorithmic practices shift attention from “thinking like an algorithm” 

to “thinking about algorithms” (Maurer, 1998, p. 24): an algorithm is no longer a tool 

for solving problems but becomes an object in its own right. This corresponding atti-

tude towards algorithms is characteristic of algorithmics, a discipline at the interface 

of mathematics and computer science (e.g., Maurer, 1998; Modeste, 2012). In the 

context of learning, the corresponding shift in perspective marks understanding 

(Sfard, 1991): Just as students learn to talk and think about mathematical concepts 

such as numbers or functions, a further educational goal is to be able to talk about 

and reflect on algorithms, not just to be able to perform algorithms without errors. 

Bringing algorithmic thinking and socio-ecological concerns together 

In thinking about how concerns in research and teaching of algorithmic thinking 

might alter, in light of questions of the socio-ecological, we turned to critical mathe-

matics education (CME) as one possible source of insight, since CME explicitly deals 

with environmental justice and also deals with algorithms (Skovsmose, 1994). 

Related to the use of algorithms, mathematics can be used to model our living 

environment (“reality”), for example to determine the average income or to analyse 

and predict climate change. Accordingly, mathematical modelling has a long tradition 

at all school levels (cf. solving word problems) and in CME. CME emphasises that in 

addition to this descriptive function, modelling also has a formatting (Skovsmose, 
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1994, 2023) and as such a normative (Pohlkamp & Heitzer, 2021) function: mathe-

matics also shapes our living environment and our coexistence, e.g. how we use the 

results of mathematical modelling to make decisions and act and how we perceive a 

real situation (setting the tax rate, determining how we deal with the climate, etc.). 

Accordingly, CME requires not only to teach (a) basic knowledge and skills 

and (b) operating within this knowledge and skills (e.g. modelling). Teachers should 

also stimulate the development of (c) reflective knowing as a third component 

(Skovsmose, 1994; Fischer, 2001, as cited in Vohns, 2017). Future citizens, in order 

to assume social responsibility as become well-informed laypersons, must not only be 

able to set up and calculate models themselves, but also have an “understanding about 

mathematics” (Skovsmose 1994, p. 47) and, in particular, be aware about the norma-

tive function of modelling and models. This means, for example, that they question 

modelling (and its results) in terms of its subjectivity, clarify its premises and quality 

criteria, etc. (Pohlkamp & Heitzer, 2021, Skovsmose, 2023). Several attempts show 

how this demand could be implemented in the classroom (child benefit (Skovsmose, 

1994), measures of poverty (Vohns, 2017), good-monkey-bad-monkey game 

(Lengnink & Pohlkamp, 2022) etc.). 

Reflective knowing of algorithms 

Just as models and their results format our (social and other) environments, so do al-

gorithms, e.g., when so-called “automated decision-making systems” based on algo-

rithms calculate decisions on the basis of which real actions are then taken (Lengnink 

& Pohlkamp, 2022). Critical mathematics education therefore needs to reflect not on-

ly on models and their implications, but also on algorithms, whether they are model-

ling a real-world problem or solving a mathematical one. Instead of just asking ques-

tions like “Did we follow the algorithm's instructions correctly? Did we use the right 

algorithm?” (which would reflect practice 1, see above), teaching must also encour-

age critical questions such as “Do we have a choice between different algorithms? 

Would a different algorithm produce the same, a different solution? Is there another 

algorithm that solves the problem in a shorter, faster, more understandable way? 

What are the limits of the algorithm, what conditions must the instances satisfy?” (for 

similar questions see Skovsmose, 2023, p. 52).  

We recognise that the above questions may seem somewhat removed from so-

cio-ecological concerns. However, we assume that classroom discussions on such 

questions might begin to allow students to develop the knowledge and competencies 

they will need to better meet the challenges of our future: the reflective knowing of 

algorithms. Socio-ecological precarity must surely prompt a radical re-look at our en-

tire curriculum and methods of schooling. At the same time, we need proposals for 

what we can do now, given all the current constraints of schooling and university life. 

Pursuing a reflective knowing of algorithms offers one possible route, which has the 

potential to both meet current curriculum demands and, at the same time, allow teach-

ers and researchers to pursue agenda relating to the socio-ecological. 

The prompt to consider reflective knowing of algorithms has pushed us into 

new research territory. As far as we are aware, this is not a question which has been 

considered before, nor tried out in practice. We hope our discussion has illustrated 

how issues and concerns in a research field might change in light of socio-ecological 

questions. Our aim is to open a conversation and we invite scholars in other fields to 

consider how their research concerns might intersect with socio-ecological issues. 
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