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Practices for developing both procedural skills and higher-order skills 
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Productive practices are well-designed packages of arithmetic learning 
environments which attempt to promote higher-order thinking skills while 
practising essential arithmetic skills. These practices allow students to 
understand and explain phenomena in a mathematical way with greater 
motivation. Regarding the whole learning environment as a complex 
ecosystem with continuous development, design-based research (DBR) is 
going to be conducted and both quantitative and qualitative data will be 
collected. This study aims to investigate how the design of the productive 
practices and the interactions between the teacher and students during the 
implementation can generate the process of mathematical thinking, 
thereby supporting deep procedural learning. A pilot study with small 
numbers of students has been conducted with the use of Zoom and 
Geogebra Classroom. Some of the preliminary discoveries from 
observations will be discussed in this paper.  
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Introduction 

In our last proceeding paper – “How to make practice more perfect? How to make 
practice more productive?” (Yeung & Fujita, 2021), we argued the necessity of 
repositioning the role of practices (mathematics exercises) for cultivating the students’ 
deep procedural understanding, which includes the cognitive understanding of the 
computational processes and the flexibility of choosing appropriate strategies. 
Therefore, we proposed that the introduction of productive practices in daily 
mathematics lessons might be a possible way to achieve this goal (Yeung & Fujita, 
2021). Productive practices are mathematically rich and well-structured small tasks 
which integrate with the training of arithmetic skills and higher-order abilities, such as 
mathematical investigation, pattern exploration, problem solving (Wittmann, 2019).  

In this research, we are going to carry out a series of productive practices in 
grade 2 classrooms (7-8 years old) to scrutinise the effect of the design. Hence, we 
can have a better understanding of the fundamental principles for designing and 
implementing these productive practices in a more general sense. And, with the data 
collected in a small-scale pilot test, the purpose of this paper is to examine what 
mathematical thinking can be observed when students undertook tasks designed for 
productive practices, and how the generation of mathematical thinking can affect the 
selection of strategy and  promote the deep procedural learning.   

Mathematical thinking and productive practice 

Productive practices are expected to improve the procedural fluency which 
means the ability of choosing strategies and applying procedures accurately, 
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efficiently, and flexibly. From knowing how to do one or two procedures to knowing 
how to select between procedures, students require careful mathematical thinking. In 
other words, deep procedure learning can only be achieved when clear mathematical 
thinking is generated. Therefore, we are focusing on how the potential mechanism, 
i.e., mathematical thinking, shapes the outcomes during or after the implementation. 
By identifying and understanding the way that the mathematical thinking accounts for 
the deep procedural learning, we can provide useful information for the educators and 
ensure the transferability of the knowledge about implementing the productive 
practices for deep procedural learning. Mechanisms have “trans-empirical but real 
existing” nature (Blom & Morén, 2011, p. 60) which makes the analysis challenging, 
but they can be captured indirectly by empirical observation of the ways that the 
people act or respond (Bhaskar, 1978; Blom & Morén, 2011). Both quantitative and 
qualitative empirical evidence will be collected in the real context and from the 
students’ interviews after the lessons. 

The evidence will be analysed with Manson’s framework of mathematical 
thinking process because the framework can explain the actions or responses of 
students. This helps us to analyse the students’ thinking processes and to capture the 
evolution in their mind (Yeung & Fujita, 2021). Mason et al. (2010) define three 
phases of mathematical thinking: entry phase (manipulating), attack phase (getting a 
sense of pattern) and review phase (articulation). From phase to phase, signature 
processes or activities will appear, such as specialising, conjecturing, generalizing and 
convincing. From the stage of manipulating the task to the stage of getting a sense of 
pattern, students are expected to pick up some specific situations (specialising), then 
to experience conjecturing, checking, and adjusting; From the stage of getting a sense 
of pattern to the stage of articulation, students are expected to experience generalising, 
applying, testing, and convincing (Mason et al., 2010). By analysing the stages of 
mathematical thinking that students are experiencing, we can visualise how their 
thinking processes affect their strategies of solving tasks and how close they achieve 
the deep procedural understanding. This information also provides us insight for 
guiding their thinking process further and reaching the learning target in the end. 

Methodology 

To have a better understanding of the fundamental principles for designing and 
implementing these productive practices, the process of designing and refining a well-
structured artifact becomes the crucial part of the research. The design of the artefact 
aims to an attentional shift of arithmetic learning objectives from solely superficial 
procedural learning to both superficial and deep procedural learning. It is the matter of 
the entire learning environment which is highly affected by the social context or 
social elements, thereby involving a complex ecosystem (Wittmann, 2019; 2021). 
Thus, it is unrealistic to conclude the effectiveness of the learning environment of 
productive practices by measuring one and only one implementation. It requires 
continuous empirical investigation, so this study is adopting design-based research 
(DBR) as the methodological approach. The main purpose of DBR is not just 
summarising the outcomes of using the designs, but also revealing how, when and 
why, the designs work in the real context (The Design-Based Research Collective, 
2003). DBR is a continuous cycle of research starting with the analysis of the problem 
and the development of the solution, followed by the implementation and data 
collection in the real educational settings. After comprehensive evaluation with the 
related evidences, both quantitative and qualitative data, we can reflect and refine all 
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different parts of the research design, then, start another new cycle of research (Amiel 
& Reeves, 2008) (Figure 1).  
  

 
Figure 1. The process of design-based research (Fraefel, 2014, p.9)  

Pilot study 

A pilot study was conducted in December 2021. A total of 5 Hong Kong grade 2 
students enrolled the online course. Due to the constraints of the COVID situation at 
that moment, some adjustments were made: 1. The pilot study was taken in an online 
setting with the use Zoom video conferencing and a mathematical online learning 
platform – GeoGebra; 2. The total amount of learning time is half of the original 
design and the course lasted for 3 hours (1.5 hours per lesson); 3. Only parts of the 
original designed tasks were conducted during the pilot study. The productive 
practices we used in this pilot study included Schöne Päckchen (Pretty Packages) 
(Figure 2), Number pyramids with pattern (Figure 3) and Number pyramid with 
missing numbers in bottom row (Figure 4). 

 
Figure 2. Schöne Päckchen (Pretty Packages) 

 

 
Figure 3. Number pyramids with pattern 

 

 
Figure 4. Number pyramid with missing numbers in bottom row 

 
Both students’ classwork and their conversations were recorded. To reveal the 

process of mathematical thinking and the way it affects the effectiveness of strategy 
selection (a crucial part of deep procedural learning), the students’ verbal explanation 
about their actions will be closely analysed and categorised by Mason’s framework. 
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The episodes from the pilot study 

When student A first tackled the pretty packages with one addend remained 
unchanged and one addend kept increasing by 1, he finished tasks 2 and 3 quickly by 
simply adding one to the previous answer to get the next answer because he got a 
sense of pattern about the answers from task 1. He applied his conjecture as a strategy 
for similar tasks. However, he could not build a solid connection between the addends 
and the answers yet, that made his conjecture underdeveloped and it could not be 
applied to general situations. This has been proved from his later performance in task 
4. Task 4 is the package where both addends keep increasing by 1. Student A got 
incorrect answers at the first trial by applying the same pattern of answer as in tasks 1-
3 (Figure 5). After checking and knowing some answers were wrong, student A 
started doing the calculation and searching for the pattern again. This action led him 
back to the process of applying the conjecture – checking (knowing some answers 
were incorrect) – manipulating – specializing and adjusting – conjecturing again. The 
conversation right after student A corrected task 4 showed that he still could not 
connect the relationship between the addends and the results at that moment (Figure 
6). He could only roughly state the partial relationship - when the first addends are 
becoming bigger, the answers will increase by 2; but, failed to mention the change of 
the second addends. With the insufficient insight of what are exactly causing this 
phenomenon, it is highly likely that his conjecture will lead him to the wrong answers 
sometimes, like in task 7. Task 7 is the package where one addend keeps increasing 
by 1 and the other addend keeps decreasing by 1. Student A experienced a similar 
conjecture cycle again. After applying the conjecture which led to incorrect results, he 
calculated and adjusted his conjecturing again. The conversation showed that student 
A was attentive to the pattern of the answers and was not able to construct the 
relationship between both addends and the results. Therefore, he kept making 
mistakes in the first attempt of the later tasks by applying the wrong strategy. It is 
obvious that student A’s understanding was vague, and he needed some guidance to 
light up his investigation. He seemed to have a more developed conjecture in later 
tasks as he could link the pattern of the answers with the pattern of addends and 
explained it verbally. Unfortunately, we could not verify this observation with other 
similar tasks or further interviews due to time constraints. 

 
Figure 5. Student A solved task 4 with the same strategy as in task 1-3 

 

 
Figure 6. The conversation about task 4 between teacher and student A 

 
Another student (Student B) moved forwards from the conjecture cycle more 

quickly than student A. He used task 5, which was similar to task 4, as an example, 
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and tried to explain the phenomenon by comparing the difference of patterns of the 
addends in different tasks (Figure 7). He built the connection between the patterns of 
two addends and the answer, and his strategy of tackling this task was based on a 
valid conjecture, so he could effectively adjust and apply his strategy in later tasks by 
observing the pattern of the addends. Furthermore, he desired to share his justification 
during the discussion and convince the others. We can conclude that student B was in 
a better position than student A to reach the stage of articulation and more effective to 
use appropriate strategies. 

 
Figure 7. The conversation about task 5 between teacher and student B 

Discussion 

Mason et al. (2010) suggest that conjectures are the core elements of mathematical 
thinking, but they do not appear as a conclusion at once. Indeed, most are incomplete 
or even false and needed to be modified soon after they are formed. In the pilot study, 
we can observe this back-and-forth cyclical process. While student B was moving 
forward to generalise the findings and to convince the others (P-A), student A was 
experiencing a conjecture cycle (P-M) (Figure 8). They worked at a different pace, 
nevertheless, both were moving forward in the process of mathematical thinking. 
Whenever they are ready to leave the conjecture cycle and start generalising the 
findings, they have higher ability to select appropriate strategies for the tasks (deep 
procedural knowledge). In the pilot study, it is obvious that the sufficient of time for 
students to conjecture, to check and to adjust while doing different tasks, provided a 
great opportunity for them to verify the most relevant elements. This process helped 
constructing their deep procedural understanding about the relationship between the 
pattern of the addends and that of the answers. For that reason, the number of tasks 
and the arrangement of the tasks are worth the attention in the design of the whole 
learning environment. 

 
Figure 8. Stages of mathematical thinking 
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Moreover, the journey of the mathematical thinking among different students 
within the same class was different. That makes the design of the guided questions for 
the discussion become as important as the design of the tasks. It was challenging in a 
classroom setting when every student has his/her own perception about the task and 
with similar but also a slightly different conjecture. However, communicating and 
sharing ideas within the students did catalyse the process of mathematical thinking 
and promote the flexibility of using strategic calculation in later tasks. Therefore, in 
the next cycle of DBR, more effort will be put into design of the guided questions. 
Also, the researcher will brief the teachers about the rationale of each task design, the 
expected outcome, and the possible divergence within the individuals. Thus, teachers 
can have better preparation for the discussion part.  
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