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Understanding the array as a model of multiplication 
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The rectangular array is widely regarded as a key model for developing an 
understanding of multiplication. It can provide insight into the structure of 
multiplication and make visible its commutative and distributive properties. 
Also, as the array evolves into the area model, it can aid the shift from 
multiplication with whole numbers to multiplication with rationals. 
However, research literature on primary school children suggest that getting 
to grips with the structure of the array is far from trivial. Our work with 
secondary school students suggest that we tend to underestimate these 
difficulties and move on from the array too quickly. In this paper, we 
discuss two interviews with Year 7 students (age 12+) in which we asked 
them to explain why one can use multiplication to evaluate an array. 
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Introduction 

As part of our recent work on the ICCAMS Maths project (Hodgen, Coe, Brown & 
Küchemann, 2014) we have been developing teaching materials involving models of 
multiplication including, in particular, the array. Views about the array as a model to 
support students’ understanding of multiplication often seem inconsistent. On one hand, 
it is generally agreed (or at least lip service is paid to the idea) that the array provides a 
powerful model of multiplication: for example, for showing that multiplication is 
commutative (rotate the array); for showing that it is distributive over addition (partition 
the array); for revealing the structure of multiplication (be it ‘repeated addition’ or 
‘equal grouping’ of rows or columns, or be it the ‘partnering’ or ‘Cartesian product’ of 
the elements in a virtual row and column); 
and, as the array shifts to an area model, for 
representing the multiplication of rational 
numbers. 

On the other hand, the array does not 
seem to be used all that widely, and where it 
is, its cognitive demands seem often to be 
underestimated. 

Regarding its use, the array is 
mentioned very early on, namely for Year 2 
students, in the 1999 National Numeracy 
Strategy Framework document (Fig 1). A 
similar statement is given for Year 3. 
However the array is not mentioned again1, 
nor does it appear in the 2001 Framework 
document for Key Stage 3 (Years 7, 8, 9). The 

                                                
1 At the presentation of this paper, Anne Watson made the comment that the DfEE was reluctant to 
allow references to the array as these were deemed to be providing advice on teaching. 

Fig 1: NNS Framework document, p.47  
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‘new’ National Curriculum document Mathematics programmes of study for key stages 
1 and 2, published in September 2013, mentions the array just five times, and in rather 
cryptic and glib statements like this one: 

They make connections between arrays, number patterns, and counting in twos, 
fives and tens. (p.8) 

Again, the equivalent document for Key Stage 3 does not mention the array at all. 
The uniform appearance of the array, be it composed of identical elements like 

‘dots’, with gaps between them, or squares or rectangles with no gaps, belies its 
complexity as a model of multiplication. To us, the structure might seem obvious, but 
this is not necessarily so for students. Consider the array in Fig 2. Image a student who 
can see that the array has the same number of elements in each row 
and the same number in each column, and that, moreover, there are 
8 elements in the top row and 5 in the the left hand column so that it 
can be called a ‘5 by 8’ array. The student might still not see that this 
provides a model of 5 × 8. At first sight, the 5 and 8 seem to be acting 
in similar ways, as ‘composite units’ (eg, Steffe, 1992) that measure 
the size of each row and each column. However, if the array is to be seen as a model of 
‘5 lots of 8’, say (ie multiplication as repeated addition or equal grouping (eg, Anghileri, 
1989)), then the 5 has to take on a second meaning, as not just the number of elements 
in each column but as the number of rows - a ‘composite, composite unit’.  

The array can also be interpreted as a model of the Cartesian product. Here we 
can revert to seeing the 5 and the 8 as both acting as composite units, but not just as 
measures of each of the given rows and columns, but, crucially, of a ‘virtual’ row and 
column as shown in Fig 3. The elements of the array can then be seen as all the possible 
‘couples’ or ‘partners’ that can be formed between these two virtual 
sets of elements. The symmetry of this, in terms of the role of the 
5 and the 8, is appealing, as perhaps is the fact that here we have a 
model of multiplication “that does not directly involve the 
operation of addition” (Anghileri & Johnson, 1992, p.161). 
Vergnaud (1983) wryly observes that 

The Cartesian product is so nice that it has very often been used (in France anyway) to 
introduce multiplication in the second and third grades of elementary school. (p.135) 

It is tempting to say the same thing about the array, including what Vergnaud says next: 
But many children fail to understand multiplication when it is introduced this way. (p.135) 

There is considerable evidence to support this claim about the Cartesian product (eg 
Brown and Küchemann, 1976), which Vergnaud explains on the basis of his analysis 
that it involves a double proportion. 

Similar evidence can be found about the array, especially in studies of young 
children (eg Outhred & Mitchelmore, 2004; Barnby, Harries and Higgins, 2008). 
Battista, Clements, Arnoff, Battista & Borrow (1998), working with 7–8 year olds on 
tasks involving arrays of squares, describe “three levels of sophistication in students’ 
structuring of 2D arrays of squares” (p.58). They make a nice distinction between 
‘local’ and ‘global’ structuring. As an example of the former, they describe the 
responses of a student, BH, to two tasks involving a 3 by 4 rectangle. First the student 
was asked to cover the rectangle with unit square tiles, which he did in the order 
indicated by the numbers in Fig 4a, below (their Fig 10a), ie top row, bottom row, left 
side, right side, middle. The tiles were then hidden and the student asked to draw what 
the arrangement had looked like. BH drew the tiles, one by one, in the same order he 

Fig 3  

Fig 2  
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had placed them, as shown in Fig 4b. Battista et al describe this as partial row 
structuring, which 

...involves local rather than 
global structuring. That is, when 
BH structured the array into top, 
bottom, sides and interior 
components, he had organised 
only parts of the array. He did 
not coordinate his structuring of 
the squares or components to 
obtain a uniform organisation 
that he could apply throughout 
the array. (p.520) 

Battista et al make a powerful case that the row-by-column structuring of the array does 
not reside in the array itself, even though it might appear so to us who have long ago 
made sense of it, but “must be personally constructed by each individual” (p.531). 

Simon and Blume (1994) report on a teaching experiment with adult students 
(prospective elementary school teachers). In one task, the students were in six groups, 
each seated around a large rectangular table. Each group was given a small cardboard 
rectangle and asked to determine how many such rectangles would cover the table. All 
of the groups used the cardboard rectangle to measure the length and width of their 
table and then multiplied the two numbers. However, when the teacher asked why they 
had multiplied the numbers, the students struggled to find a structural explanation: 

Some asserted that “it seemed like the easiest way”, or that "in previous math 
classes you learned the formula for areas". Some responded that they did it because 
it works; they had seen examples of how the product was the same as the number 
arrived at by counting up all the rectangles. The teacher pressed them to consider 
whether there was any reason to expect that their method would always work. Most 
of the students seemed puzzled by this question... (p.478) 

In this paper we report on interviews with two groups of three school students 
who gave very similar responses to the adult student teachers. Each group came from a 
Year 7 mixed attainment class (but from different London schools). In one case (Group 
A) the students were classed as low attaining by their teacher; in the other case (Group 
B) they were high attaining. 

The Interviews 

The interview with Group A lasted nearly an hour. The aim was to trial tasks for a 
potential lesson, in which we imagine cutting and re-joining a 12 cm by 25 cm 
rectangular piece of card to make a 3 cm by 100 cm rectangle and a 60 cm by 5 cm 
rectangle.  

We began the interview by showing the diagram in Fig 5 for just 3 or 4 seconds. 
We then asked the students to give a “rough guess” 
for the number of “little squares” covered by the 
white rectangle. The students, who we shall call 
Fiona, Mari and Neil, responded with “Around 50”, 
“Yes, 50” and “Around 55”. These are quite low 
estimates, given that the actual number is 300 (the 
rectangle turns out to be 12 unit squares high and 25 
unit squares wide). This suggests that these 
estimates were more likely to have been made by 
simply thinking of a ‘large’ number than derived in 

Fig 4 

Fig 5  
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some way from estimates of the rectangle’s dimensions. This is perhaps not surprising, 
since the students were not given time to scrutinise the diagram in detail and since they 
were being encouraged to guess. The interview continued as follows (‘Int’ is the 
interviewer). 

1.56 Int: If you had longer to look at it, what would you do to try and get the exact 
number? 
Neil: Count how many squares up and how many goes along and times it [talks 
over Mari who says the same kind of thing]. 
2.10 Int: Why would that work... 
Neil: Because instead of adding - Mari: Because it’s quicker, timesing. 
Int: Why not add or - Neil: Add is longer - Mari: Add takes more time. 
2.33 Int: Times is quicker. But why is that the right thing to do? Why does it give 
you the right answer rather than just a quick wrong one? 
Mari: Because if you add it will take too long and you’ll lose count a bit, yeh, but 
if you do how many squares going up and then across you’ll know how much to 
times it by and then you’ll get the correct answer. 
2.56 Int: I’m still not clear why it’s correct. I mean, I can understand that it’s quick, 
but it could be quick and wrong, couldn’t it? 
[All three start to answer. Int asks Fiona.] 
3.08 Fiona: Basically I think that it might be right. I think it’s better timesing 
because if you did it without the squares it would be the same if you see what I 
mean but if you added you might lose count or you might forget where you were, 
and with timesing it’s easier and you don’t have to count any squares or anything. 
3.33 Int: OK, it’s nice and easy, if you know your tables, or if you’ve got a 
calculator... Neil, do you have anything more to say why it works actually? 
3.44 Neil: If you add you have kinda like all the lines going down but if you times 
it fills in basically a whole big square of .... of little squares. 
3.56 Mari: I’ve got something to add... If you add you could think you’ve done one 
square but you’ve actually missed it and you just end up getting the wrong answer. 
4.12 Int: Yes ....  

Throughout this two minute sequence, the students seemed to persist in the 
belief that we were asking about the functionality of their method (it’s quicker and more 
reliable), rather than about its validity (why does it work?). Is this because they think 
of mathematics as being primarily about procedures and they are not used to giving 
explanations in terms of mathematical structure? The nearest hint that we get of 
mathematical insight seems to occur at 3.44 where Neil talks of filling the rectangle 
(big square) with little squares. He also mentions ‘lines going down’ so perhaps he is 
thinking of columns of squares. 

It seems likely that the rule that the students were using is something they learnt 
(at primary school) in the context of area rather than more broadly with regard to arrays. 
‘Area = length × width’ (or some such) is such a simple little rule, it is not surprising 
that teachers latch on to it and that students remember it (and even apply it correctly 
much of the time). However, the ‘length × width’ rule is especially difficult to interpret 
in the context of area - we are multiplying two lengths and creating an entirely new 
entity, area. What is area? Do students realise that it is (usually) measured in unit 
squares, and is about covering a region? It is thus perhaps not surprising that students 
find it difficult to hold on to any meaning, if they ever had the chance to construct one, 
that they had for their easily remembered rule. 

In the previous school term these students experienced a lesson on arrays that 
their teacher was trialling for us. The arrays there were relatively small (5 by 9 and 6 
by 17) and were composed of dots rather than space-filling squares. Also, the class and 
the teacher spent some time talking about rows and columns. It seems that this 
experience did not impact on the current task, either because the experience was too 
long ago and/or too brief, or because arrays of dots are not sufficiently similar to arrays 
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of squares for these students. Nonetheless, it would have been interesting to return to 
these tasks and to see whether they could construe their current rule in terms of numbers 
of rows or columns. In the event, we decided instead to stop our line of questioning 
about the rule, and, after a brief look at the diagram again, we moved on to our other 
prepared interview tasks. 

The Group B students were interviewed 
just after an array lesson that their teacher was 
trialling for us. This involved a task similar to 
the Group A interview task, about a rectangular 
card (9 by 17 this time) covering a grid of 
squares (Fig 6). The lesson was highly 
structured with a focus on partitioning the card 
into rows or columns of unit squares. Despite 
this experience, and despite their high 
attainment, these students, who we shall name 
Nikki, Yara and Theresa, gave very similar 
responses to Group A: 

0.30 Int: We were finding the number of squares underneath our white piece of 
card.... People said all you really need to do is multiply the two sides of the 
rectangle. Why does that work? 
0.58: Nikki: Because to find the area of a rectangle or a square you have to always 
do length times width. 
1.08 Int: That’s a rule which we learn and which is true, but why is that rule true? 
1.15 Nikki: Because if you count up all the squares it would actually give the same 
answer as the area. But if you multiply it saves more time. 
1.30 Int: OK, so yes, if the rule is true, and we know it is, then it must give you the 
same answer as if you counted every one. So the rule is quick but why... Could you 
explain why it must work? 
1.48 Yara: It works because they have like the same length and width...  
Int: Could you say a bit more? 
2.02 Yara: If you like times it you get the same answer. 
2.10 Nikki: It would normally work for a square or rectangle... It will work for a 
parallelogram, but won’t work for a trapezium I guess. It has to be - the length for 
both sides has to be the same, and the width for both sides has to be the same. 
[We spend some time discussing how to find the area of a trapezium, at the end of 
which Nikki draws a rectangle which she divides into 6 by 4 squares.] 
3.52 Int: That’s a nice drawing. How many squares are there in that rectangle? 
04.00 Nikki: So there will be 1, 2, 3, 4, 5, 6 [counts along top row, writes 6]. Times 
by 1, 2, 3, 4 [counts down the left hand column, writes 6×4=24], which is 24. 
Int: OK. Can you use that to explain to me why 6 times 4 is a quick way of getting it. 
4.24 Nikki: Um, so, if you count up all the squares it will still be 24, and if you 
multiply the length, which is this [gestures along top] and the width, which is that 
[gestures along left edge], you would still get 24 because you’re... The area is 
basically all the ones inside and if you multiply it shows the area which is inside 
the square, I mean the rectangle. 
4.50 Int: Yes, we’re trying to count all the squares inside the rectangle, and you’re 
telling me that 6 times 4 will give me all the squares. But why will it give me all 
the squares? 
5.00 Nikki: Because if you multiply the length and the width it will basically give 
the area, and um... The area means that the area inside like a 2D shape, or a 3D 
shape, um... so... the area in this shape would basically be 24 because, yeah, it says 
how much is inside. 
5.25 Int: Yes, we know it’s 24 because we can count every one, but I still don’t 
quite understand why 6 times 4 is a way of doing that. 
5.38: Nikki: It saves on time. 
Int: It saves on time but why does it work? 
5.42 Nikki: Um... <frustrated laughter> 

Fig 6   
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5.50 Int: This is hard, because it is so obvious to you, it is hard to put it in words.. 
5.55 Nikki: It’s basically the area, that’s all I can say. And the area shows what’s 
inside, and that shows how much is inside. 
6.06 Int: OK, that’s true, it’s fine. Can someone else put it in their own words? Say 
I was a 5 year old and I need to know why this works... Any thoughts? [long pause] 
[No reply is forthcoming and we move on to something else.] 

Conclusion 

It is possible that our interview tasks, because they involved a blank rectangle and unit 
squares, pushed students towards using the rule for calculating area. The rule is easy to 
remember which may lead some teachers to believe that it is also easy to understand. 
Might it be that even our high attaining students have never been encouraged to explore 
the rule properly? If we had used dots instead of squares, would any of the students 
have given a structural explanation? We clearly need to investigate these issues further. 
But from what we already know, it seems likely that students would benefit from using 
arrays, and especially arrays of dots or other discrete elements, far more at both the 
primary and secondary level than seems to occur at present. 
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