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Making sense of fractions in different contexts 
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This presentation is based on a study of 20 pupils, aged 9-10, in a 

Norwegian primary school. The pupils were exposed to two, rather 

different, classroom situations and in both situations the concept of 

fraction was central. The pupils were given tasks and in order to 

accomplish these tasks it was necessary to make sense of fractions in 

some way. An interesting observation is how the presence of different 

mediating artefacts influences the pupils’ meaning making. 
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The classroom episodes 

The first episode takes place in the pupils’ regular classroom, which is quite large and 

holds an area furnished as a kitchen at one end. There are 20 pupils in the class and 

the pupils come in groups of five to the kitchen area to do a particular task, making 

batter for waffles. This task involves measuring out a number of ingredients (milk, 

flour, butter) and in this paper I am particularly interested in what happens when the 

pupils measure out 15 decilitres of milk. The milk comes in boxes marked “1/4 liter
2
”, 

and the pupils have measuring beakers available that can take 1 litre. The beakers are 

transparent, with a scale marked “1 dl, 2 dl, …. 9 dl, 1 lit” from bottom to top. 

The second episode takes place some time later. In this episode the pupils 

receive a task sheet with drawings of red and blue milk boxes of equal size and with 

the information that a blue box contains 1/3 litre of milk and a red box contains 1/4 

litre. Here the standard fractional notation with a horizontal bar is used. In this text I 

will use the fraction notation a/b to save space. On the task sheet the following four 

situations are described: A: Three blue boxes, B: Four blue boxes, C: Four red boxes, 

and D: Three red boxes. The following questions are given: 

 Which box, red or blue, contains most milk? 

 Which situation, A, B, C or D, represents the largest quantity of milk? 

 And which situation represents the smallest quantity of milk? 

 Are there any situations with the same amount of milk? 

 How many decilitres of milk are there in situation D? 

 You need 15 decilitres of milk and you have boxes containing 1/4 litre, hence 

red boxes. How many boxes do you need? 

The pupils have only pencil and paper available and no concrete material. The 

20 pupils are grouped in the same way as in the first episode and each group leaves 

the rest of the class to join me in an adjacent room to work with the task for about 30 

minutes.  

Both episodes were video recorded and the video footage constitutes the most 

important data for the analysis. Video recordings have been transcribed, first in 

Norwegian, and later parts of the transcriptions have been translated into English. In 

addition there exist notes and drawings made by the pupils in the second episode.  

                                                 
2
 Norwegian spelling of litre 
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The most important research questions for the study are: how do the children 

make sense of fractions given with different representations, and, in what ways will 

mediating artefacts influence the children’s sense making of fractions? 

Theoretical framework 

The study reported on in this paper is concerned with pupils applying and developing 

mathematical knowledge in different settings, which calls for a stance that knowledge 

is situated (Lave and Wenger 1991). Closely related to this is also the idea that the 

knowledge depends on the sociocultural artefacts that mediate between stimulus and 

response (Wertsch 1991). I will use the term artefacts to denote both physical tools, 

such as measuring devices that are used in the described situations, and psychological 

tools, such as language and signs. All the artefacts involved are considered as cultural 

tools, containing both psychological and physical aspects (Säljö 2005/2006, 28). 

My analysis of the pupils’ work in the two situations rests heavily on semiotic 

theory. The concept of sign is fundamental, and according to Peirce   

[a] sign is a thing which serves to convey knowledge of some other thing, which it 

is said to stand for or represent. This thing is called the object of the sign; the idea 

in the mind that the sign excites, which is a mental sign of the same object, is 

called the interpretant of the sign. (Peirce 1998, 13, emphasis in original) 

A sign has two functions, a semiotic function; “something that stands for 

something else”, and an epistemological function, indicating “possibilities with which 

the signs are endowed as means of knowing the objects of knowledge” (Steinbring 

2006, 134). All mathematical objects are abstract but, despite this, mathematical 

concepts and the signs representing them are used to refer also to real life situations. 

A sign or symbol can therefore be thought of as representing a mathematical concept 

as well as a concrete object or reference context. This is visualised in The 

Epistemological Triangle (Steinbring 2006, 135) shown in Figure 1 below.  

 

 

Figure 1: The epistemological triangle 

The relations in the Epistemological Triangle are largely conventional and in a 

learning process these relations are in development. In a given situation meaning is 

created through mediation between the sign/symbol and object/reference context. This 

means that the system is continuously in development based on interaction between 

pupil/s and teacher. According to Steinbring “[t]he links between the corners of the 

epistemological triangle are not defined explicitly and invariably, they rather form a 

mutually supported, balanced system” (Steinbring 1997, 52).  

Analysis of the two episodes 

Although the two episodes can be said to deal with largely the same mathematical 

topic they are very different in their context. Even though the first episode takes place 

in a mathematics lesson it is very close to an everyday context. Both the task itself 
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and the artefacts that are used are of a nature that the children will recognise from 

their daily life experiences. The purpose of the task is also of a very practical 

character. The pupils were supposed to make the batter for the waffles and later in the 

day they were going to cook the waffles and eat them together with other pupils at the 

school. In the second situation the task is of a nature which could be said to be typical 

for a school task. Although it makes reference to daily life artefacts (milk boxes) the 

milk boxes are only imaginary and it had no practical consequences whether the task 

was correctly solved or not.  

Making sense of the symbol 1/4 liter 

In the first episode most pupils noticed the text “1/4 liter” on the milk boxes and they 

started to discuss the meaning of this sign. Several suggestions were offered for the 

meaning of the sign. Here are some examples: “One four litres”, “One comma
3
 four 

litres”, “four and a half litres”, “one and a half litres”. Some of the suggestions are 

combined with common sense such as when the teacher challenges the proposal that it 

is 4.5 litres in one box the pupils suggest that it must be decilitres, because, as one 

pupil says, “it isn’t even half a litre”. In one of the groups Jessica suggests that one 

box contains “one comma four” (i.e. 1.4) litres and James follows up by suggesting 

that it will be 2.8 if they take two boxes. If they had relied on counting in this way 

they would not have obtained the desired amount of milk but Ellie points to the fact 

that there is an empty measuring beaker on the table which they can use. Jessica had 

not seen this in the first place, but being made aware of it she and James start pouring 

milk into the measuring beaker. Now the scale of the measuring beaker takes over the 

role as a sign connecting the amount of milk to the boxes (reference context). This 

new sign renders the original sign 1/4 liter obsolete and the pupils no longer have any 

need to make sense of this sign. On the video one can see that the pupils follow 

closely the level of milk rising in the measuring beaker when they pour in the fourth 

box and they show no sign of making a connection between the fact that they have 

used four boxes and that the scale shows 1 litre. Jessica says that “we need to have 

five more decilitres”. Now they pour the milk into the bowl with the flour and fetch 

another box of milk. Jessica pours in the content of the box into the now empty 

measuring beaker and says “three decilitres” while looking and pointing at the scale. 

During this process I ask how much there is in one box. Jessica looks at the sign 1/4 

liter and says “one comma four litres”.  

The measuring task has now been completed without ever making correct 

sense of the sign 1/4 liter. When I ask them how many boxes they have used they 

present the answer “six” which is obtained by counting the empty boxes. The excerpt 

below shows how Jessica works only in the realm of decilitres and the number of 

boxes only comes in because it is explicitly asked for by me, not because it is 

necessary to complete the task.  

 

Jessica: Three, four, five six. Have you thrown away any? 

Ellie:  Me. No. 

Jessica: OK, then we have used six. 

Frode:  Six, to get 15 decilitres? 

Jessica: Yes, we had 10 before, and then we took five now. 

                                                 
3
 In Norwegian “comma” is used for the decimal point, so “one comma four” would be 1.4. 
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 My interpretation of this episode is that during the process the measuring 

beaker has been introduced as a new sign, replacing the sign given in fractional 

notation, and the mediation of the concept 15 dl takes place between the scale of the 

measuring beaker and the milk boxes instead of between the sign 1/4 liter and the 

milk boxes. The effect of the measuring beaker can be seen also in the reasoning of 

Joseph and Thomas, who were urged by the teacher not to use the measuring beaker.  

Joseph: Ohh. A quarter of a litre, that is … a quarter … ten decilitres is 

one litre. We have to have three of these then, then it will be. Five 

of these I think … no not five. How much should we, Thomas, if 

we take three of these, no four, then it is one litre and we want 

fifteen decilitres, and that is, and ten decilitres that is one litre. 

But how many more than four do we have to take then? 

Thomas: Then we have to take four, and then we have to take … two 

Joseph: Then we have two, and ten decilitres here. And then it is fifteen. 

The excerpt above shows that 1/4 is replaced by “a quarter” and that “four plus 

two boxes” will equal one and a half litre. Without the measuring beaker the sign 1/4 

is given meaning in order to solve the task.   

Which box, red or blue, contains most milk? 

This is the first question on the sheet given to the pupils in the second episode. Here 

the reference context is taken to be the pictures of the coloured, equally sized, boxes 

and the sign is given in the standard fraction notation, such as in Figure 2.  

 

 Figure 2: The epistemological triangle for the volume 

To compare the volume of the red box to the volume of the blue box the only 

available representation is the symbol given as a fraction. The reference context gives 

no information about the relative size of the boxes. The pupils soon agree that 1/3 > 

1/4 and to justify their argument they create a new reference context in terms of a 

rectangle divided in strips. An example is shown in Figure 3. The drawings are not 

made to match the actual situation but I interpret that the drawings are meant to show 

that when m > n, 1/m < 1/n. This interpretation is supported by a statement from one 

of the pupils saying, “the larger the number below, the smaller is the actual part”. 

 

 
 

 

 

 

 

Figure 3: Comparing fractions 
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How many boxes to get 15 dl? 

In Episode 1 the pupils relied on the measuring beaker to get the correct amount of 

milk, except Joseph and Thomas who were encouraged to manage without it. In 

Episode 2 the option of using a measuring beaker, or any other physical artefact, is 

not there, so the pupils have to rely on making sense of the signs. I have previously 

described how the group with Jessica and James completely depend on the scale of 

the measuring beaker to get 15 dl in Episode 1 and that they answer the question 

about how many boxes they have used by just counting the empty boxes. Below is 

part of the dialogue when the same group solves the problem of getting 15 dl in 

Episode 2. 

Jessica:  Five, ten, fifteen. It will be three 

Ellie:   So it is three 

Frode:   OK, five, ten, fifteen. That is three 

Ellie:   It is just like in D, one, two, three 

Jessica:  Three boxes, it will be three boxes 

James:  Three boxes, no, we should have fifteen 

Ellie:   We are not supposed to have fifteen boxes, but fifteen decilitres 

Jessica:  Yes, and each box takes two and a half decilitres 

Emily:  Couldn’t we… 

Jessica: I did not understand this 

Ellie:  Me neither 

Emily:  Two comma five, two comma five, that is five, and then we have 

five three times in fifteen, and then it is two for each, so it is six 

Ellie:  OK, but then I did not understand anything 

… 

 

Emily:  Every five is two boxes, so it is three, therefore six. 

After some initial confusion Emily comes up with a solution by converting 2 

times 2.5 to 5 and then 3 times 5 to 15. Then she finds the number of boxes, 6, by 

taking 2 times 3. Compared to the solution by Joseph and Thomas presented before 

there are similarities but also differences. Both solutions entail building up the total 

amount using a multiplicative procedure but in different ways. Joseph and Thomas 

find that 4 boxes equal 1 litre and that they need 2 more to get 15 dl = 1.5 litre. This 

reasoning was repeated by Joseph in Episode 2 when he said about Situation C (where 

there are 4 boxes of 1/4 l): “C is one litre, which is ten decilitres. Then I need half of 

C again, and that is two and therefore it is six. Two plus four is six.” Both solutions 

involve two steps, where the first step establishes a relation between a number of 

boxes and a number of decilitres that is easy to handle further to get 15. Presented in a 

table the two solutions can be illustrated as shown in Tables 1 and 2 below.  

 

     

 

 

 

 
        Table 1: Joseph’s solution    Table 2: Emily’s solution 

Boxes Dl 

4   10 

4+(half of)4= 

4+2=6 

15=10+(half of)10= 

10+5 

Boxes dl 

2 5 

3x2=6 15=3x5 
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The solutions shown in Tables 1 and 2 end with the answer six boxes as a 

result of a process where the symbol “1/4 liter” plays a crucial role. Joseph, in 

accordance with his reasoning in Episode 1, connects 1/4 with “a quarter” and “four 

quarters equal one whole (litre)”. Emily links decimal notation to fractional notation, 

2.5 dl = 1/4 l, and then she uses 5 dl as a starting point to count 5-10-15. In Episode 1 

the presence of the measuring beaker made the interpretation of the symbol 1/4 liter 

redundant. Instead of 1/4 liter being the sign that mediates between boxes and 

decilitres the scale of the measuring beaker was used as the mediating artefact. The 

scale functions as an indexical sign (Peirce 1998) that has a real connection to the 

object that it represents, namely the milk in the measuring beaker.  

Further analysis of the two situations described in this paper can be found in 

Rønning (2010 and in press).  
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