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Priming methods involve showing a stimulus for a short amount of time (the prime), 
followed by a second stimulus (the target), which children are asked to perform some 
operation on. If there is a strong association between the prime and target for a particular 
child, then the operation on the target will be facilitated by the presence of the prime. 
This paper describes a project in which priming methods are used to add to our 
understanding of strategy development for simple addition problems. Children were 
asked to complete two activities; a priming trial designed to demonstrate priming effects 
for doubling, and a set of addition problems where participants were asked to explain 
how they arrived at their answers. Approximately half of the participants used counting 
strategies (count-on from first, count-on from smallest), while half used non-counting 
strategies (decomposition, tie or retrieval). Results indicate that a priming effect for 
doubling relationships but only for the group of children using non-counting strategies. 
This result could help to  explain the relationship between the development of number 
knowledge and the development of new strategies.  

Introduction 

There is a well established understanding of the normal course of development of strategy-use 
when solving single-digit arithmetic problems (e.g. Fuson 1992). Children begin this course 
of development by counting both addends in an addition problem, often using concrete 
objects such as fingers to aid the process. The next strategy to appear is the count-one 
strategy, in which children start with one of the addends, then count on from there to find the 
answer. The 'min' strategy usually comes next, which involves children choosing to count on 
from the largest addend. These three strategies all involve children counting in order to arrive 
at an answer to a problem. At some point, children will begin to be able to solve some simple 
problems using retrieval – directly accessing answers to problems stored in memory. 
Although strategies generally appear in this order, children maintain a repertoire of several 
strategies any any given point during this development, and show a high degree of variability 
in their application of strategies to problems (Siegler 2007).  

Fewer studies have addressed the nature of strategies used to solve problems resulting 
in answers greater than 10. However, this aspect of the literature is growing due to the recent 
focus on children's adaptive expertise in selecting amongst strategies (Verschaffel, Torbeyns, 
De Smedt, Luwel, & Van Dooren 2007). When children are solving addition problems that 
bridge 10, there are heuristic strategies available that sit between the counting strategies and 
direct retrieval in terms of efficency. The problem '8 + 7', for example, might be solved by 
converting the problem to '7 + 7 + 1' – this is often referred to as the 'tie' strategy and is often 
used in the case of 'near tie' problems where the addends differ by 1. Alternatively, '8 + 7' 
might be solved by converting to '8 + 2 + 5', if a child knows their number-bonds to 10 
(sometimes known as 'ten-friends') – this is often referred to as a 'decomposition' strategy. It 
is not clear what factors are involved either in stimulating the adoption of new strategies in 
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response to problems or in determining the selection of one strategy over others that are 
available in relation to a given problem.  

The relationship between number knowledge and strategy development 

Torbeyns, Verschaffel and Ghesqiere (2005) give a hypothetical example of a child who is 
able to accurately retrieve the answer to 6+6, but not 7+7 or 8+8. This child would be 
expected to be more likely to use the tie strategy when solving 6+7 (by transforming the 
problem to 6+6+1) than when solving 7+8 or 8+9. Torbeyns et al. showed that children in 
their study differed in the efficiency with which they carried out counting, decomposition and 
tie strategies, but that children at a range of different ability levels all showed similar levels of 
adaptivity, generally choosing the strategy that would generate a correct answer most quickly 
in response to a particular problem. Torbeyns et al. only analysed data from children who 
were already using either the decomposition or tie strategy –  their aim was to study variation 
in adaptivity related to differences in achievement in mathematics, not to investigate the 
necessary conditions for the development of these strategies. 

Very relevant to the current discussion is the existence of a “tie effect” (LeFevre, 
Shanahan, & DeStefano 2004), whereby the problem-size effect (the fact that arithmetic 
problems with larger answers tend to be answered more slowly than those with smaller 
answers) can generally not be observed for tie problems (where both addends in an addition 
problem are the same). LeFevre et al. showed that the tie effect is not due to facilitation of 
encoding (the fact that the same number appears twice means it is more quickly encoded the 
second time), but is due to calculation and memory access. 

It seems reasonable to argue, as do Torbeyn, Verschaffel and Ghesquiere (2005), that 
good knowledge of doubling relationships (pairings between 6 and 12, 7 and 14 and so on) is 
required in order for children to begin using the tie strategy. However, this paper aims to go a 
step further and make the claim that implicit knowledge of doubles is a prerequisite for use of 
the tie strategy.  

Using priming to investigate number knowledge 

The first study of number knowledge that employed priming as a method was that of den 
Heyer and Briand (1986), in which a priming distance effect (PDE) was observed. The PDE is 
the phenomenon that a reponse to a target stimulus is facilitated by the presentation of a prime 
that is similar in magnitude to the target. For example, in the lexical decision task used in den 
Heyer and Briand's study, participants were quicker to respond to 'five' after the prime 'four' 
than after the prime 'three'. The PDE has been shown to be equally strong in both directions – 
so the prime '4' facilitates processing of a target '5' as well as it does '3' – and has also been 
demonstrated in different modes, whereby the prime 'six' facilitates processing of 'seven' or 
'7', for example  (Reynvoet, Brysbaert, & Fias 2002). 

There is some debate regarding the mechanism underlying the PDE. Some researchers 
have explained the effect in terms of operations on a 'sub-symbolic' number-line, used in 
order to compare number information in terms of magnitude. However, there is evidence to 
suggest that a connectionist approach might generate a more satisfactory explanation. There is 
evidence, for example, that as well as proximity on the number line, other relationship 
amongst numbers can give rise to priming effects. Garcia-Orza, Damas-Lopez, Matas and 
Rodriguez (2009) show that, for adult participants, the prime '2x3' facilitates processing of 
target '6', using a masked prime protocol. This suggests that, rather than sub-symbolic 
processing, these priming effects reflect symbolic processing within something like Collins 
and Loftus' (1975) semantic activation network. 
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Method 

Participants 

57 children, from two primary schools, took part in this experiment. They were aged between 
7 years, 2 months and 9 years, 11 months. In each school, the Mathematics Coordinator was 
asked to select those children who were able to reliably solve single-digit addition problems, 
but did not yet consistently use a retrieval strategy. All of the children who participated in the 
study had experienced classroom instruction in the use of a range of strategies for solving 
addition problems, including counting strategies, decomposition and tie.  

Instruments and measures 

Two tasks were prepared, using the DirectRT psychology experiment software package. 
Stimuli were presented to participants in the centre of a 17 inch monitor, using a 48 point 
font. A microphone was used in order to measure verbalisation latency.   

Addition problem task 
For this task, a set of addition problems was created. All single-digit addition 

problems with two addends, where the two addends were different and the answer was greater 
than 10, were included. Participants were asked to respond with an answer to each problem. 
Following an answer, participants were prompted with the question, “How did you solve the 
problem x + y?” Problems were presented to participants at random, without replacement. 
Strategies were coded as being either “count-one”, “min”, “decomposition”, “tie”, “retrieval” 
or “other – including don't know”.  Three practice problems were given before starting the 
main set of problems. The practice problems were “7 + 3”, “6 + 2” and “4 + 4”. 

Priming task 
60 prime-target pairs were created. Of these, 15 pairs related to the present study. 

Primes used were “5”, “6”, “7”, “8” and “9”. The target stimulus in each pair was either the 
exact double of a prime, or the double +/- 1. The remaining prime-target pairs presented to 
participants were included in order to ensure that participants could not predict that the 
purpose of the study was to assess knowledge of doubles, and were constructed as if intended 
to address participants' knowledge of number bonds and proximity on the number line. Prime-
target pairs were presented at random, without replacement.  

Timings were as follows: Fixation “*”: 1000ms; Prime stimulus: 200ms; Fixation “*”: 
500ms; Target stimulus. Participants were instructed to say into the microphone the second 
number in each pair (the target), as quickly as possible. The reaction time recorded for each 
trial was the time it took for the participant to begin reading the target number, following its 
presentation.  

Design 

The experiment employed a mixed design, with two independent variables. The first 
independent variable was the relationship between prime and target in a prime-target pair. 
There were 3 conditions of this variable; the target was either double the prime minus one, 
double the prime exactly, or double the prime plus one. The second independent variable was 
whether or not participants claimed to use the tie strategy at least once whilst completing the 
addition problem task. The dependent variable was the time that it took to read aloud the 
target stimulus. 
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The hypothesis was that reaction time would be least when the target was the exact 
double of the prime and that this effect would be observed only for those participants who 
used the tie strategy at least once during the addition problem task.   

Procedure 

Participants completed the two activities individually, in a quiet room outside of their usual 
classroom. A laptop computer was used to generate stimuli and record reaction times via a 
microphone. The experimenter watched the laptop screen during each trial, whilst participants 
watched a second monitor, synchronised with the laptop.  

Half of the participants completed the addition problem task first, followed by the 
priming task, while half completed the two tasks in the reverse order. The researcher 
introduced the task, and gave the participant an opportunity to ask questions. Three practice 
trials were completed, followed by a further opportunity to ask questions. The block of 
experimental trials for the task were then completed.  

Results and Discussion 

The addition problem task was used in order to divide participants into two groups. 29 
participants reported using the tie strategy on at least one occasion during this task, while 28 
participants did not.  

A 3 x 2 mixed ANOVA was carried out. The independent variables were prime-target 
pair (repeated measures: target = 2 x prime – 1; target = 2 x prime; target = 2 x prime + 1) and 
whether children used the tie strategy at least once during the addition problem solving 
activity (independent groups). The dependent variable was the median time it took for a 
participant to begin reading the target stimulus. 

There was a significant main effect of prime-target relationship (F2, 84=4.867, p=0.01). 
This indicates that participants were significantly quicker to read a target that was exactly 
double the preceding prime than a target that was 1 greater or 1 less than the exact double of 
the preceding prime. There was also a significant interaction between prime-target pair and 
strategy use (F2, 84=6.879, p=0.002). As can be seen in Figure 1, the effect of variation in 
prime-target pair on RT is accounted for entirely by the group of children using the tie 
strategy. There was no significant main effect of strategy use on reaction time.  

Participants who used the tie strategy to solve at least one of the set of addition 
problems were quicker to read a target that was the exact double of the prime than a target 
that was the exact double of the prime plus or minus 1. The participants in the study had no 
way of predicting the relationship(s) under investigation. This means that on perceiving the 
prime stimulus, the double of the prime (amongst other cognitive resources including 
numbers and concepts) was automatically activated.   

When the target stimulus was the exact double of the prime, participants' reading of 
the target was facilitated due to that number already having been activated. 
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Figure 1: Graph to show effect of prime-target pair type on RT, by strategy use 

 
Thus this study clearly demonstrates the fact that children using the tie strategy have 

implicit knowledge of the relationship between numbers and their doubles (at least for 
numbers between 5 and 9). This result contributes substantially to the literature on both 
children's arithmetic strategy development and its relation to the literature on the nature of 
children's representation of number. 

The findings do not directly identify a causal relationship between the development of 
knowledge of relationships between numbers and their doubles and the development of the tie 
strategy. However, of the two  possible interpretations (either the implicit knowledge of 
doubles is a necessary condition for the development of the tie strategy, or children's 
knowledge of the tie strategy encourages the rapid development of knowledge of doubles) it 
is intuitively most likely that children must develop a knowledge of the relationships between 
numbers and their doubles before they can add the tie strategy to their repertoire. This fits fits 
well within a resource activation framework (Hammer, Elby, Scherr, & Redish 2005).  Within 
this framework, cognitive resources are activated in response to a problem situation. These 
resources are used in the assembly of ad hoc theory in order to generate a solution.  

Further work must be done in order to fully understand the relationship between the 
development of implicit knowledge and the development of strategies, but some important 
implications should be considered at this stage. Most importantly, the study calls into question 
the claim that teachers should be helping children develop ways to select amongst available 
strategies for solving problems. Torbeyns, Verschaffel and Ghesquiere (2005) found there 
was no difference in levels of adaptivity (the ability to select the most efficient strategy from 
a repertoire of available strategies for a given problem) between children across a range of 
mathematical ability. The present study shows that children do not use the tie strategy if they 
do not have implicit knowledge of relationships between numbers and their doubles. Taken 
together, the evidence from these studies shows that the development of new strategies, and 
the development of the adaptivity necessary to select amongst strategies, occur as a result of 
the development of associated cognitive resources such as the knowledge of particular types 
of relations amongst numbers.  

These results help to provide an explanation for some effects observed in previous 
work. For example, Siegler and Stern (1998) observed that a majority of children in a study 
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were using a new strategy for solving a number of problems before they were aware of using 
it. Within the resource activation framework, the learner's use of a particular procedure 
(resulting from the automatic activation of relevant cognitive resources) and the learner's 
representation of that procedure are quite different things. The representation of a particular 
strategy will always follow that strategy's first use (whether it follows immediately or at some 
later point). 

Conclusion 

This study represents an important step in our growing understanding of children's 
development of mathematical thinking. Its main contribution consists in the argument that 
implicit knowledge of relationships between numbers and their doubles is a necessary 
prerequisite for the development of the tie strategy.  
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