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During the primary school years, children are typically expected to 
develop ways of explaining their mathematical reasoning. This paper 
reports on ideas developed during an analysis of data from a project which 
involved young children (aged 5-7 years old) in a whole-class situation 
using dynamic geometry software (specifically Sketchpad). The focus is a 
classroom episode in which the children try to decide whether two lines 
that they know continue (but cannot see all of the continuation) will 
intersect, or not. The analysis illustrates how the children can move from 
an empirical, visual description of spatial relations to a more theoretical, 
abstract one. The arguments used by the children during the lesson 
transcend empirical arguments, providing evidence of how young children 
can be capable of engaging in aspects of deductive argumentation. 

Keywords: mathematics; geometry; primary school; elementary school; 
ICT; technology; teaching; parallel lines; reasoning; argumentation; proof 

Introduction 

Across the world, a common aim of primary/elementary school mathematics is to 
provide a foundation for proof and proving through children being expected to 
develop ways of explaining their mathematical reasoning. Such learning is fostered as 
children move into middle school/lower secondary school, with deductive proofs 
typically being introduced when children are 13-14 years old. What remains a central 
question for research in this area is how best to develop children’s explanations in a 
way that appropriately supports their growing understanding of the nature of proof 
and proving in mathematics (Stylianou, Knuth and Blanton, 2009).  

This paper reports on ideas developed during a consideration of data from a 
project which involved young children (aged 5-7 years old) in a whole-class situation 
using dynamic geometry software (specifically Sketchpad). The focus for this paper is 
a classroom episode in which the children try to decide whether two lines that they 
know continue (but cannot see all of the continuation) will intersect, or not. The 
episode relates to two important, and growing, areas of research in primary school 
education: first, the nature of proof and proving in the elementary grades, and 
secondly the development of understanding of spatial relations in the early years of 
school. These areas of research are summarised in the two sections that follow. These 
summaries are followed by an account of the selected classroom episode, analysed in 
terms of discursive features that mark the children’s transition from an empirical, 
visual description of spatial relations to a more theoretical, abstract one.  

Research on young children and proof 

Research has pointed to the abrupt transition that children can encounter as they move 
from primary school, where proof can be absent, to secondary school mathematics, 
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where it becomes more of a central concern (Balacheff, 1988; Ball et al., 2002; Jones 
and Rodd, 2001; Sowder and Harel, 1998). In order to mitigate the effects of this 
abrupt transition, several researchers have argued that proof should begin in the early 
grades, not just in geometry, but also in arithmetic (Bartolini-Bussi, 2009; Stylianides, 
2007; Stylianou et al, 2009). Further, there is growing evidence that young children  
can be capable of engaging in deductive reasoning and proving (Carpenter, et al., 
2003; Galotti et al., 1997; Light et al., 1989; Maher and Martino, 1996).  

What it means to engage in ‘proving’ requires some explanation, as Jahnke 
(2007) notes, since a proof must depend on the concept of a theory. For Bartolini-
Bussi (2009: 53), in the primary school, theories are “germ theories” that are “based 
on empirical evidence, with expansive potential to capture more and more principles.” 
In other words, an experimental approach does not necessarily work against the 
production of general methods and the construction of mathematical proofs. Bartolini-
Bussi argues that proving in the early years depends on the teacher being able to lead 
children from an experimental activity, through discussion, towards general methods 
and justification, in order to nurture a theoretical attitude.  

In a somewhat different approach, Stylianides (2007) argues that proving in 
the primary grades should satisfy two principles: (a) what he calls the intellectual-
honesty principle - the conceptualization that primary school geometry, for example, 
should be “honest to mathematics as a discipline and honoring of students as 
mathematical learners” (p. 1); and (b) what he calls the continuum principle - that 
there should be continuity in this conceptualisation across the different grade levels. 
Using a case study example, Stylianides draws parallels between a Grade 3 child’s 
argument and Balacheff’s (1988) notion of a “thought experiment” which is the 
highest level of Balacheff’s hierarchy of arguments (and which transcends the 
empirical arguments that are used in lower levels). Here it is worth noting that 
Balacheff’s “thought experiment” describes not only proof, but, perhaps more 
broadly, argument:  

The thought experiment invokes action by internalizing it and detaching itself 
from a particular representation. It is still coloured by an anecdotal temporal 
development, but the operations and foundational relations of the proof are 
indicated in some other way than by the result of their use. . . (p. 219)  

Research on young children and parallel lines 

As Bryant (2009: 9), confirms, children’s spatial understanding begins early; certainly 
before the start of formal schooling. By five, according to Bryant, children can take in 
and remember the orientation of horizontal and vertical lines very well. In contrast, at 
this age, children have considerable difficulty in remembering either the direction or 
slope of obliquely-oriented lines. Yet, the research summarised by Bryant indicates 
that if there are other obliquely oriented lines (in the background) that are parallel to 
an oblique line, the children’s memory of the slope and direction for the oblique line 
improves dramatically. It seems that children can use the parallel relation between the 
line that they have to remember and stable features in the background framework to 
store and recognise information about the oblique line.  

Bryant concludes that younger children probably perceive and make use of 
parallel relations without necessarily being aware of doing so. The implication for 
teaching is that a key task for the teacher is to transform the children’s implicit 
knowledge of parallel lines into explicit knowledge. A goal of the teaching 
experiment reported in this paper was to make children’s implicit knowledge more 
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explicit by inviting them to reason about the relationships between lines. Further, in 
keeping with the emphasis on proof and argument in the early years of school, the 
project followed Bartolini-Bussi in designing classroom tasks that would start 
experimentally but then provide an opportunity for nurturing a theoretical attitude.  

An elementary school classroom episode on parallel lines 

The classroom episode analysed in this paper comes from work with Grade 1 and 
Kindergarten children (aged 5-6) at a pre-K-6 (nursery) University Laboratory school 
(a school model informed by the original Laboratory School run by John Dewey at 
the University of Chicago). The school was in an urban area (rated as middle socio-
economic status, SES). There were 22 children in the class from diverse ethnic 
backgrounds and with a wide range of academic attainment (25% being special needs 
learners). The project entailed working with the children for three days on a selection 
of geometry topics, each involving the dynamic geometry package Sketchpad 
(Sinclair and Crespo, 2006). Each lesson lasted 30 minutes and was conducted with 
half the class at a time. The children were seated on a carpet in front of a large screen, 
with two researchers, and the class teacher, present. The first author conducted the 
lessons. Each lesson was videotaped and transcribed. The lesson presented in this 
paper focused on conceptualising intersecting and parallel lines. The children had 
already had two previous lessons involving the dynamic geometry package Sketchpad 
but had not previously received any formal instruction relating to lines, intersections, 
or the notion of parallel lines. 

The lesson began the children being shown several examples of pairs of lines, 
where some intersected and others did not. In talking about these examples, the 
children described the former as “touching,” and were offered the more technical 
word “intersection” which they immediately connected to roads crossings - and, 
interestingly, cars crashing. The children were then shown two lines that were non-
parallel but that did not intersect on the screen (see Figure 1). When asked whether 
the lines make an intersection, most children responded “no.” After a few seconds, 
one boy said “Oh yes they do.” Several students began talking at once, and one said, 
“Because they go out of the screen.” So the instructor adjusted the screen image 
enough to make the intersection visible.  

 
Figure 1: A non-visible intersection 

The instructor then dragged the lines even further apart, so that the intersection 
was again not visible. This time most children said that the lines would intersect. 
Then a few said that they wouldn’t. Jamie (all names are pseudonyms) added, 
“Because they are too far apart.” Other children hedged; “I think they might” said 
one. 

Given the lack of consensus, the instructor probed further. 
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Instructor:  Can we make some theories about why the lines might intersect? 

Robert:  Because it’s tilting [referring to the red – upper – line]. 

Zeb disagreed: “The lines, um, can’t meet at the edge of the screen because 
they are too far apart and they can’t just like suddenly just have a straight line going 
down and meet”. Then Jamie seemed to change his mind: 

Jamie:   Cause they are going like this [tracing with his index finger two 
lines coming together].    

Instructor:  But do you think they would ever meet? 

Jamie:   Yes, because they are both slanting and the red one is slanting 
toward the blue one.  

Natasha agreed with Jamie, but neither argument seemed to convince Robert:  
Natasha:  It’s going to always connect somewhere because the red one is 

slanting so it’s going to connect somewhere over here [pointing 
toward the outside right of the screen]. 

Instructor:   Even if we can’t see it, it’s going to connect, intersect somewhere 
over here? 

Robert:  I think it’s never going to intersect 

Instructor:  Why? 

Robert:  Because I just do. 

Instructor:  What do you think about the theory that the red is slanting more 
and more toward the blue? 

Robert:  (Standing up) But the blue is also going like this [using hands and 
arms to show that both lines are slanting]. 

Instructor:  Oh I see; interesting. So the blue is slanting too. 

Robert:  As long as both…., the red’s going down, the blue’s going down 
beside it so the line can’t just go like that [bringing his hands 
together, curving the top one down to touch the bottom one] and 
then intersect. 

The instructor returned to a configuration where the intersection is visible and 
showed how both the lines can slant. Then Natasha offered a different reason: 

Natasha:  But it’s always going to slant because right there [pointing to the 
left on the screen] that’s how thick it was so it’s always going to 
slant.  

When prompted to repeat her ‘theory’, Natasha said, “because there [hand 
positioned so that her index finger and thumb were a certain distance apart] isn’t the 
same thickness and it’s going to intersect because it always gets smaller.” Natasha 
came to screen and put her index finger on the red line and her thumb on the blue and 
moved toward the intersection, showing how the separation decreased between her 
index finger and thumb.  

The instructor then dragged the lines to make the intersection non-visible. 
Jamie explained why the lines will intersect: “Because the red one is slanting enough” 
[he gets up to trace to lines off the screen and create their intersection with his 
fingers]. 
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Discussion 

At the outset, the children’s geometric discourse is about shapes immediately visible 
to their visual field. So, for example, “line” is a linear segment drawn on the screen. 
This evolves into an unbounded process that leaves a linear trace, as can be seen in 
the way the children begin to talk about “they are going like this” and “the red one 
going down” and the “red one slanting more and more.” This change may seem 
marginal at first, but it marks a significant leap from the geometric discourse of those 
who are captives of their visual field and speak about static visible objects, to the 
discourse of possibilities (hypothetical things: “it’s going to connect somewhere other 
here”) and abstract objects (the point of intersection) resulting from reified processes. 

The role of the instructor is crucial in bringing about the change in discourse, 
not only in terms of the manipulating of the lines - which go from having visible, to 
invisible, intersections - but also in terms of modelling the new discourse. The 
questioning begins with “do the two lines meet?” and then turns into a more 
hypothetical formulation about “why they might intersect” - the former being about 
the static, visible lines and the latter going beyond the here-and-now, implying that 
the ‘line’ is not just what is contained in one’s visual field. This discursive shift is 
evident in Natasha’s statement “It’s going to always connect […] so it’s going to 
connect somewhere other there,” which involves a hypothetical, dynamic way of 
talking. The instructor reinforces this way of talking when asking “Even if we can’t 
see it, it’s going to connect, intersect somewhere over there?” and when re-voicing the 
children’s dynamic description that “the red is slanting more and more toward the 
blue.” 

Toward the end of the classroom episode, the children use the word 
‘intersection’ to describe a place where two lines meet, but this place no longer needs 
to be visible - indeed, the children show awareness that they do not even need to find 
where the intersection actually is. Two new gestures are introduced by the children, 
that of the extending of the lines using one’s arms, and that of the ‘thickness’ (the 
separation) between the lines – the latter represented as the distance between the 
thumb and the forefinger. What is more, two new ways of finding out whether two 
lines intersect are offered by the children: one involves focusing on the slanting of the 
two lines, and, particularly, whether one of the lines slants ‘enough’, while the other 
involves looking at the changing separation of the lines. 

Concluding comments 

In the classroom episode analysed in this paper, the children were being asked to 
come up with a method whereby they could predict whether two lines might intersect. 
Although not explicitly about parallel lines (though the word was eventually 
introduced to describe lines that the children argued would not intersect), their task 
involved analysing the relation between lines, and characterising the difference 
between lines that intersect and lines that do not - a characterisation that forms the 
basis for the definition of parallelism. Natasha and Jamie both offer arguments that 
qualify as thought experiments, in Balacheff’s sense. The ability of the students to 
internalize and detach seems to be mediated by the dynamic sketch they used first to 
experiment with lines and then engage in hypothetical events and relations. Overall, 
the analysis illustrates how young children can be capable of transcending empirical 
arguments and engaging in aspects of deductive argumentation. 
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