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Undergraduate students starting to work on mathematical proofs face the two-fold 
challenge of finding words that express reasoning, and evaluating their reasoning 
against formal mathematical models. Mathematics is simultaneously opened up by 
opportunities of language, and closed down by logical and conventional practices of 
formal mathematical discourse.   In this paper I examine undergraduates’ early 
written number theory proofs to explore linguistic features that characterise a 
transitional undergraduate discourse. I present two examples of students’ use of 
language - predictive transformation of argument and use of an ambiguous structural 
descriptor - and discuss how these serve to structure a deductive approach. 

INTRODUCTION 
Early undergraduate experience can be seen as an induction into the discourse of 
formal mathematics, and especially that of proof.  At the same time the practices, 
register and contextual referents that form the discourse are strengthened and 
reaffirmed by the students’ participation (Recio & Godino,2001).  There has been 
much discussion of the conflict between the explicit conventions surrounding formal 
proof and its role - to explain - in school mathematics (Hanna, 1991).  This conflict 
also arises in undergraduate mathematics when educators need to give formative 
feedback on students’ proofs while upholding the formal model of logical absolutism. 
This raises questions such as: Can a proof be right but expressed badly?  Is it possible 
to recognise progression in the expression of logic?  Can we distinguish language 
from reasoning?  There is little discussion, even in the school mathematics 
community, of how to improve students’ verbal reasoning - perhaps because of the 
difficulty of getting them to do any at all. 
Students find it difficult to write mathematical proofs, in the sense of general 
arguments based on deductive logic.  They often adopt proof schemes that are 
empirical, even when they judge that such proofs are not appropriate (Harel & 
Sowder, 1998, Healy & Hoyles, 2000).  This suggests that investigating the 
interaction between the text a student produces and the purposes that the student is 
trying to achieve may help to understand students’ participation in proof. My study 
therefore takes a discursive approach to the proof texts of early undergraduates.  I use 
the definition of discourse as language-in-use, having regularities that may be 
inferred and described but which are not explicit or defining (Yule and Brown). I 
compare features of these texts with the discursive features of formal proof texts  
(Balacheff, 1987, Morgan, 1998), and offer a linguistic perspective on one common 
student proof scheme, transformational proof  (Harel & Sowder , 1998). 
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DISCURSIVE FEATURES OF FORMAL AND INFORMAL PROOF 
I follow Morgan (1998) in describing the linguistic features of mathematical 
discourses in terms of their ideational, interpersonal and textual functions.  The 
ideational function is the way in which language expresses experiences deemed 
mathematical.  Ideational characteristics of formal texts are that they include 
specialist words, signs, and grammatical structures such as nominalized verbs (e.g. 
conjecture) by which a process becomes a noun (Halliday & Martin, 1993). Informal 
classroom discourse instead makes use of subtechnical metaphor (Cameron, 2001), 
for example, goes into for the technical divisor.  Children’s spoken mathematics also 
makes use of deictic pronouns such as ‘it’ to refer to general concepts without having 
to delineate them (Rowland, 2000).  Formal texts are depersonalised, 
decontextualised and detemporalised, thereby distancing readers from mathematical 
activity and actors, and suggesting general truths by minimising contextual factors 
(Balacheff, 1987). This is evident in the high proportion of verbs which convey 
relational or mental processes, i.e. concerning attributing/ identifying or sensing / 
thinking, as opposed to material processes concerning doing (Morgan, 1998, p 80). 
Portraying mathematical experience as remote from human activity also bears on the 
interpersonal stance of formal texts i.e. the expression of social relations in the text.  
In formal texts the authors are positioned as authorities, thinkers rather than doers, 
and not engaged in debate with readers. They include few uses of personal pronouns 
and only occasional use of verbs with human actors.  The textual function is how the 
text expresses its communicative purpose, seen in its organisation on the page, in 
paragraphs, and in sentence structures. e.g. by organising sentences in the form As …, 
hence … to demonstrate reasoning.  A useful indicator of textual function is the 
themes of sentences, found at their beginnings in English.  In formal mathematics 
these are often expressions of causality, and this privileges deductive argument over 
narrative or description of context. 
The research questions that structured the analysis were: 

1. How do students’ texts differ in their ideational, interpersonal and textual 
functions from formal mathematics texts? 

2. Are there any characteristic regularities of an undergraduate discourse?  If 
so, what is the nature of their use within the argument? 

METHOD 
The data for this study took the form of texts written by students in the first 
assignment for their undergraduate-level mathematics and education course at a 
British university.   The 21 students were intending teachers, studying solely 
mathematics for this first year; 15 were women, 6 men; 14 were undergraduates aged 
around 18-20, with the other 7 being older post-graduate students ‘converting’ to 
mathematics after taking degrees in other areas. The students were following a 
Number Theory syllabus consistent with first year mathematics majors.  They were 
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given the task as part of the number theory course, to be completed individually at 
home.  The task (Fig 1.) is one that had been developed and refined over several years 
by the teaching team, with a pedagogic intention of modelling and encouraging 
written reasoning about elementary number theory concepts. 

 Fig. 1 The Task 
For any given positive integer a, denote by N(a) the number of positive divisors d of a 
such that d and a/d are coprime. 
For example if a = 12 d   1   2  3  4  6  12 
            a/d  12  6  4  3  2   1 
     coprime?  y  n  y  y  n   y  so N(12) = 4. 
Check that you understand the definition of N(a) by working out N(50) = 4 and N(84) = 
8. Comment on the truth of the following statements: 
“If N(a) = 2 then a is a prime number” 
“N(a) can be any even number” 
“If a is the product of two primes then N(a) = 4”  

The students were told they would receive detailed feedback on accuracy, reasoning 
and writing style.  The responses can thus be seen as students’ first public attempts 
during the course to engage in a formal written discourse.   
Analysis 
The analysis consisted of two parts: a product-level collection and categorisation of 
linguistic items identified a priori as significant in a proof discourse, and a process-
level - richer and deeper - analysis of how these contribute to the students’ claims 
towards formality and proof.  For the product level analysis, a framework of 
linguistic features was associated with the formal register, or with the expression of 
empirical/ deductive reasoning.  This provided the basis of the first approach to the 
transcripts: a systematic and to some extent quantitative search abstracting and 
classifying linguistic features recognised to be of interest: themes, types of process, 
modified verbs, nominalized verbs, personal pronouns, deictic pronouns, repeated 
phrases, and patterns of sentence construction. 
The second approach to the transcripts was to return to the students’ individual texts 
to examine the linguistic features identified in situ.  This analysis is dynamic, looking 
at how the items are combined on the different timescales of phrase, sentence and 
paragraph level (Cameron, 2001), with the aim of examining the effect in forming the 
student’s textual argument, in positioning the student interpersonally, and within 
formal and informal discourses of proving.   

FINDINGS AND DISCUSSION 
Is mathematics concerned with activity or reasoning? 
Research in Number Theory (Zazkis & Campbell, 1996) has described students’ 
preference for performing material procedures as a problem solving activity.  The 
table below shows that this was not dominant as an organisational strand in these 
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texts.  Just under half of the students’ themes concerned argument, serving both 
textual and ideational functions of establishing the text as concerning reasoning about 
logical statements. 

Categories of theme Number of instances (total = 473) 
Reasoning (e.g. If, Therefore, As, So) 217 
Question heading/ restatement 68 
Object ( e.g. N(a)) 63 
Nominalized verbal or mental process (e.g. 
The statement…) 

57 

Deictics (It, This) 29 
Verbs (e.g. Looking at) 29 

The texts as a whole show a similarly restricted use of material processes as verbs.  
Only some 60 different verbs were used (in 687 occurrences); with a huge 
preponderance of forms of to be or to have i.e. processes describing relations between 
objects.  The non-relational verbs were usually in the passive tense, and any actors 
tended to be mathematical objects rather than humans e.g. the statement applies ... 
Where personal pronouns were used they were usually associated with the classroom 
metaphor “saying/seeing = understanding”, and often in the modal form we can say. 
Thus, the full analysis of ideational, interpersonal and textual functions suggested that 
most students were writing within a recognisably formal mathematical genre, having 
adopted the characteristics of reasoning themes, downplaying of human actions, 
claims to authority and prevalence of relational over material processes. 
Types of process used 
In the previous section I described the few instances of material processes as verbs. 
Perhaps unsurprisingly, these occurred when students described more complex 
reasoning.  For example, while almost all students use the relational verb is for the 
familiar fact that: 

A prime is only divisible by 1 and itself; 

they use the material processes come, occur, and arrive for divisors of a general 
integer.  Other material processes (obtained, produced, given, formed) are used with 
the symbol N(a) as their object.   In these cases N(a) is produced passively,  i.e. with 
no actor, or with the subject being an It or This that refers to a worked example 
placed nearby the text. N(a) is thus being described as the product of a material or 
mental process rather than as an object which is related to a. The task text does 
suggest a function interpretation by using the notation N(a) but does not explicitly 
define a function N. The students do adopt the language of N(a) as an outcome, but 
only make deictic references to the function itself.  
Relational process verbs such as be and have are seen as formal in that they distance 
proofs from activity, but when the students use them in a modal form will be they can 
also suggest the carrying out of procedures.  Thus Jenny writes: 
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True. If a number a is not a square number then its divisors form pairs, which will either 
be coprime or not, ∴N(a) will be an even number.  If a is a square number, it will have 
pairs of divisors, and its square root as a divisor.  N(a) will still be an even number 
because a/d where d is √a will not be coprime &∴does not change N(a).    (my emphasis 
in bold) 

The use of the future will instead of the present tense of mathematical propositions, or 
the conditional would of a hypothetical if-then formulation, suggests a potential 
action i.e. a generalisation beyond specific instances.  Jenny’s echoing of d and a/d 
from the layout in the question also suggests that her reasoning includes a mental 
carrying out of that process.  Therefore she is not reasoning solely from logic applied 
to relations, properties and definitions although that is the tenor of her argument as 
shown by her themes. 
In the set of texts 115 of the 687 verbs used were similarly modified uses of will be or 
will have, suggesting the outcome of a potential unspecified action of discovery, 
perception or construction.  Uses of a straightforward future tense related to a specific 
time-related event were unusual and different in their nature, e.g. I will test one more.  
Thus, although material processes were downplayed in the themes of the texts, they 
are retained as potential actions when elaborating the generality of the argument.  The 
evidence is that material processes are not completely abandoned as in formal 
mathematical discourse but referred to indirectly.  Students expect the reader to 
understand that they should imagine the outcome of carrying out processes. 
Jenny’s proof (above) is an example of what Harel and Sowder (1998) describe as a 
transformational proof scheme common amongst college students.  Such proofs are 
characteristically goal oriented; they consider aspects of generality of the conjecture; 
they involve a transformation of an image; and anticipation of its outcome acts as a 
structure for deductive inferences that will yield an argument.  Jenny considers 
aspects of generality: a square or not. As she changes a to be a square – the 
transformation - she considers what effect this will have on N(a), and by anticipating 
the effect on the outcome of the counting procedure concludes that it does not change 
N(a).  So a second purpose of the will be formulation is to signal the transformations 
that change her reasoning to cover all cases. In her conclusion she has focussed on the 
important characteristic, parity, rather than value.  If you actually did change a from a 
non-square to a  square number, then N(a) would be almost certain to change, and 
again this shows the potential nature of her action and the fact that she is using it to 
structure an argument rather than actually performing it on an example. 
Jenny refers to the properties of having divisors and being coprime, with calculation 
processes implicit. For students writing in this way, the process outcomes could be 
abstract mathematical objects.  A different approach used by many students was to 
reason in terms of the visual outcome of the worked example, thereby implying a 
material process and using properties of its representation as a metaphor for 
properties of the abstract mental object. Many visual terms were used by students 
e.g., middle, appearing , with others that could refer to both procedural and visual 
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approaches, e.g. pairs, sequence, arranging, permutations.  For example Fiona’s 
proof not only uses grid, table and symmetry but introduces symmetry in an incorrect 
use of the | symbol meaning “divides into” : 

For any even or odd number, (a), then there will always be an even number of divisors. 
…] Because if b⎢c then c⎢b – so all divisors arrive in the grid in pairs. This is shown in 
the line of symmetry in the table … 

In summary there are two prevalent metaphors of potential action, one based on the 
material/mental process of finding and checking divisors, and the other on the 
material process of creating the visual outcome.  Their use of these metaphors in the 
text is associated with reasoning.  Fiona’s is a typical example in that words that carry 
the metaphor are closely combined with her reasoning words (even shown).  In the 
next section I shall look in detail at how one particular word – pair – acted as a 
structural descriptor for the problem, referring to general concepts through repeated 
and deictic reference (Radford, 2001). 
Pairs: a structural descriptor 
The word pair is not used in the question text, but nevertheless 18 out of the 21 
students introduced it to describe the divisors in their reasoning about N(a).  The 
word itself just happens to suit this task; my aim is to illustrate how it is used to 
structure an argument: 

An even number of divisors can be obtained when a is not square […] 
d   c1 c2  … cn 

a/d  cn cn-1 … c1 

Pair of values which when multiplied together produce a.  Each pair occurs twice (2 
permutations), with both elements appearing once as a value in d; and once as a value of 
a/d.  When a value of d, x is coprime to a value of a/d, y, the reverse is also true: a value 
of d, y is coprime to the value a/d x.  Thus N(a) can be an even number. 
An odd number of divisors can be obtained when a is a square. 
In this case, the middle pair of values (When d=√a) will be identical, meaning they are 
not coprime, and a second permutation cannot be found.  Ultimately only the twin pairs 
are left and thus, N(a) can again be even. 
It therefore follows that for all values of a, where a is a positive integer, will give an even 
value of N(a). 

Tim’s ungrammatical first phrase starts, I guess, as a comment on his diagram above 
but also serves implicitly to define his use of pair and values.  He notices and 
describes his pairs in process terms, with elements appearing as values of d and a/d. 
For Tim, values is a secondary structural descriptor: he previously used the notation 
ci but then abandoned it. Visually, the variables d and a/d act as row headings with the 
values as entries.  Exactly the same word pattern, value of d, value of a/d is then used 
for the coprime argument, and leads to his conclusion for even numbers.  Thus, in this 
first case, pair introduces a word pattern that gives the whole argument continuity.   
Tim also uses the transformational proof strategy of predicting how the arrangement 
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will change for an odd number of divisors. He now treats pairs as objects and focuses 
on their properties (middle, twin) and what happens to them.  Ultimately is usefully 
ambiguous in signalling both the end of the processes of calculation and 
transformation, and of Tim’s argument. In this penultimate sentence, the nature of the 
pairs themselves, how they were derived, and what is meant by twin, is considered 
shared knowledge and used as a premise from which to conclude that N(a) is even.  
As a noun, pairs therefore serves a deductive function in encapsulating all that has 
gone before, and referring back to it when used to introduce the next conclusion 
Some part of the power of the word is perhaps in its vagueness. It is possible to move 
easily between levels of abstraction, for example in saying that the middle pair of 
values will be identical he ascribes a property of values to the pair as an object. Tim 
carefully distinguishes two permutations of vertically arranged pairs, d with a/d, and 
then coins twin pairs to describe the effect of horizontal pairing, or pairing of pairs.  
Other students using pair did not attempt this last distinction (Jenny’s proof, for 
example) but their proofs read as equally valid. I conjecture that this ambiguous 
usage is concise and effective in allowing the reader to interpret the word in any 
meaningful way, while highlighting the notions of matching and parity that are most 
relevant to the desired conclusion.   

CONCLUSIONS AND IMPLICATIONS FOR TEACHING 
The aim of this study was a description of elements of the undergraduate student 
proof discourse, tracing their relation to everyday, school and formal mathematical 
discourses.  Many of the practices of formal mathematical discourse had been 
adopted by these students, in particular the depersonalisation and detemporalisation 
of text and thematising of deductive reasoning.  There were also examples of using 
narrative verbs and empirical justifications more appropriate to the school 
mathematics discourse. Most of the invalid proofs were marked by reliance on these 
informal reasoning claims as well as the use of incorrect definitions. 
Most of these students adopted a proof scheme which could be termed 
transformational (in the classification of Harel and Sowder, 1998), in which they 
started from a typical case with a known process outcome and predicted what would 
happen if the case changed.  These proofs were phrased mostly in terms of potential 
actions. The phrases will be or will have signal not only the decontextualisation and 
detemporalisation of material or mental processes which derive N(a) from a but the 
generality of the students’ reasoning when it is transferred from one case to another. 
Students used both material process and visual outcome metaphors to describe 
properties of N(a), and some of these phrases could be identified as structural 
descriptors, appearing repeatedly in extended arguments. The most common 
structural descriptor was pairs. I suggest that a key reason for the students’ success in 
using the term is its ambiguity, with both process and visual referents, and the 
potential to blur the distinction between pairs and the objects that are paired.  This 
structural descriptor acts similarly to the use of nominalization of formal 

 166



  

mathematics, i.e. by referring back to previous statements, and presenting them as 
unarguable. Further research is needed to verify this hypothesis in other contexts, and 
whether the practice is present in informal proof-making activities that lead on to 
formal mathematics. 
Finally, the finding that students use proofs relying on transforming between cases, 
suggests it as a proof heuristic that can be integrated with proof by generic examples: 
think of the typical case. What could go wrong? How can it be resolved?  This overall 
textual function of critiquing an existing argument to some extent reflects the 
approach of the task, i.e. to set up statements and then comment on their truth, but it 
may also be a wider feature of students’ transitional discourse.  In this context a 
teacher could consider making more explicit use of the For all quantifier. It might be 
useful to reformulate a case-by case proof into a For all proof, and this would give 
students experience of setting up a single notation such as ...m n oa p q r= that offers 
control of the desired variation of prime factors. 
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