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This paper draws on research in the areas of gender differences in mathematical 
cognition and transfer of mathematical knowledge. An attempted replication of 
Mevarech and Stern (1997) will be discussed, in which data indicates a difference in 
the ways that boys and girls transfer knowledge between isomorphic problem sets 
with varying context. Girls’ improvement between trials is predicted by the strategy 
they use in the first trial, while boys’ improvement is not. Boys’ improvement seems 
to be predicted to some extent by the order in which abstract and realistic problem 
contexts are presented, although the mechanism for this is not clear. A future study 
will be outlined that aims to confirm and clarify some of the issues raised here.    

TRANSFER OF KNOWLEDGE IN MATHEMATICS 
For a student to be able to use and apply a mathematical principle, they must be able 
to transfer knowledge of concepts across contexts. This paper is concerned with 
differences in the ways that children transfer concepts. In a study of children working 
as street vendors in Brazil (Carraher, Carraher et al. 1985), it was reported that the 
children could solve some fairly complicated problems that related to their work but 
were unable to solve isomorphic problems outside of that particular context. It would 
seem that a child that can apply a mathematical concept across a range of contexts has 
a fuller understanding of that concept than a child who can apply the same concept 
only in one particular context. 
The term ‘procept’ has been coined in order to describe a combination of process and 
concept. Gray and Tall (1994) argue that a successful student of mathematics does 
not distinguish between process and concept, instead accumulating understanding in 
term of procepts. Those students that think in this condensed way – understanding 
that one symbol or set of symbols can represent both a process and a concept – are 
doing a qualitatively different (and easier) kind of mathematics than those who 
cannot. An example they give of a procept is: 

The symbol ¾ stands for both the process of division and the concept of fraction   
(Gray and Tall 1994) 

Understanding symbolism in this way requires abstraction in understanding. It allows 
children to derive new facts independently of experience – for example the fact that 
13 – 11 = __ is the same as 11 + __ = 13. In the same way, children who think in 
terms of procepts are able to understand that ‘-5’ represents both a process (either 
subtracting five or moving five steps to the left on a number-line) and a concept (the 
negative number -5). This will mean easier progress in solving problems involving 
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the manipulation of negative numbers, compared to that made by a student who 
thinks of the process and the concept as two irreconcilable entities. The Brazilian 
children in Carraher, Carraher et al. (1985) had knowledge of the processes involved 
in the mathematical problems set in the context of their work, but did not have 
knowledge of the related concepts. Their lack of proceptual understanding meant that 
they were unable to solve the same problems in different contexts. Presumably, if a 
child can be said to have a proceptual understanding of a particular mathematical 
concept, then they will be able in many cases to use that concept in finding the 
solution to associated problems. Saxe (1991) has asserted that children with such 
context-bound understanding construct “different kinds of mathematics knowledge” 
to those with a traditional schooling in mathematics. Anderson et al. (1995) suggest 
that Carraher, Carraher at al. (1985) and others such as Lave (1988), “demonstrate at 
most that particular skills practiced in real-life situations do not generalize to 
school situations. They assuredly do not demonstrate that arithmetic procedures 
taught in the classroom cannot be applied to enable a shopper to make price 
comparisons or a street vendor to make change” (p. 4). Many questions regarding 
both effective conditions for conceptual understanding and individual differences 
between students in conceptual understanding remain unanswered. 
  
Mevarech and Stern (1997) suggest that there is greater facilitation of understanding 
in sparse problem contexts and improved transfer of knowledge when moving from 
sparse context to realistic context. Two groups of children were given both the 
sparse- and realistic-context version of a set of graph problems, in opposite orders. 
Children’s understanding of the concept of rate of change was facilitated to a greater 
extent by sparse context than by realistic context, also that transfer of knowledge was 
more effective from sparse to realistic context. There was an analysis of the number 
of correct answers given by the children and a restricted analysis of the explanations 
given. These findings complement the notion of the procept in that the experience 
gained from an abstract problem set is more likely to provide a student with 
recognisably transferable knowledge, whilst experience from a realistic problem set 
provides information to some extent tied to the context within which it is presented.  
The aim of the present study was to replicate Mevarech and Stern (1997), and in 
addition to investigate the differences between students’ answers and explanations. 
Analysis will be undertaken of the understanding of problems demonstrated by 
individuals and the relation between that understanding and improvement between 
trials. The data presented in Mevarech and Stern (1997) reported averages and left 
open questions regarding individual patterns of explanation type and improvement. It 
is clear that not all students responded in the same way. The data suggest that some 
students showed patterns of responses other than those discussed. One way in which 
it was predicted that students might differ in the present study was across genders. 
Reasons for this prediction are discussed in the following section.  
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GENDER DIFFERENCES IN MATHEMATICAL COGNITION 
Fennema et al. (1998) investigated the difference between boys’ and girls’ strategy 
use and found that girls tended to use standard strategies while boys tended to use 
more abstract, invented strategies. In addition to these results, Fennema found that 
those students (both boys and girls) who did use more creative or inventive strategies 
in solving problems were more able to solve extension problems. 
Boys will tend to use retrieval in order to solve simple arithmetic problems while 
girls will tend to use algorithmic procedures. Boys tend to rate social pressures to 
solve problems quickly and effortlessly very highly and high ratings for such 
pressures are a good predictor of the use of retrieval by the end of the first year of 
primary school (Carr and Jessup 1997). Characteristics such as impulsiveness are 
typically associated with boys and have been shown to be good predictors of the use 
of retrieval when solving problems (Davis and Carr 2001). However, strategy choice 
is not only a function of preference. When strategy choice was controlled so that 
children could use only retrieval, boys outperformed girls (Carr and Davis 2001). 
Strategy choice is determined by a function of social pressure, temperament and 
influence of parents and teachers (Carr, Jessup et al. 1999), related to, but not 
exclusively determined by, gender. 
The work of Fennema and of Carr has involved children in the first few years of 
school education solving simple arithmetic problems. A study involving older 
students investigated the strategies used when solving some problems from the 
American SAT-math paper (Gallagher and De Lisi 1994).  Problems were classified 
as either conventional or unconventional. The conventional problems could be solved 
using standard algorithmic procedures, while the unconventional problems were best 
solved using insight or intuition. The purpose of the study was to determine how boys 
and girls chose strategies according to problem-type. They found that boys were more 
likely to choose strategies appropriate to a problem than were girls, and were 
therefore more likely to answer problems correctly. In a later study, the results of 
Gallagher and de Lisi (1994) were replicated (Gallagher, de Lisi et al. 2000) and the 
authors concluded that, ‘strategy flexibility is a source of gender differences in 
mathematical ability’. 
The present study aims to analyse the differences in answers, explanations and 
patterns of improvement demonstrated by boys and girls in response to the abstract 
and realistic problem sets, with attention given to the consistency or flexibility of 
strategies used. 

ATTEMPTED REPLICATION OF MEVARECH AND STERN (1997) 
Design 
A two-way factorial design was used, the independent variables being problem type 
and problem order, with repeated measures on problem type. The dependent variable 
was the number of correct answers given, out of a possible total of 9, for a set of 
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problems. There were two conditions for each independent variable. Problem types 
were ‘sparse’ and ‘realistic’; Problem orders were ‘sparse to realistic’ or ‘realistic to 
sparse’. 
Predictions were that students would perform better on problems set in sparse context 
than in realistic context (problem type), and that greater improvement would be 
achieved by students moving from sparse to realistic context. In addition, it was 
predicted that there would be differences in the type of explanation given for answers 
to problems depending on both problem type and problem order. 
Tasks 
Three isomorphic sets of problems were used, adapted from the study of Mevarech 
and Stern. Each task took the form of three printed A4 sheets stapled together. The 
top half of each sheet showed a graph – all of the questions in the set referred to the 
same graph. The instructions advised children that could do any workings out on the 
graphs if they thought it might help, and also that they should pay careful attention to 
their explanations when asked for. 
On the second page there were 6 questions (1.a-c and 2.a-c) that asked children to 
read values from the graph given a value on one axis. The part c questions asked 
children to work out how much the value on the y-axis increased as the value of the 
x-axis increased. On the third page there were 3 questions (3. 4. and 5.) that were 
taken directly from Mevarech and Stern (1997), with only the wording changed in 
order to improve children’s understanding of the questions. These asked children 
about the rates of change of the two lines on the graph and also asked children to 
explain how they decided on their answer. 
The only difference between the three sets of problems was the context. The sparse 
context problems involved a graph with axes labelled ‘x’ and ‘y’, and lines labelled 
‘line A’ and ‘line B’. There were two sets of realistic context problems; one involved 
a graph with axes labelled ‘income’ and ‘year’ and lines labelled ‘company A’ and 
‘company B’, while the other involved a graph with axes labelled ‘amount of water’ 
and ‘time’ with lines labelled ‘tank A’ and ‘tank B’.   
Participants 
Participants were 45 year 9 students (aged between 13 and 14) studying at a school in 
Nottinghamshire. Students in the school were divided into two populations, or 
streams (X and Y). Within each stream, students were taught mathematics in sets 
from 1 to 5 according to achievement, where students in set 1 were the highest 
achieving. The participants in this study were all of the students present for both 
sessions in the two set 3 classes in the school (22 in class 9Y3, 23 in class 9X3).  
The tasks were administered in the students’ usual mathematics classrooms. Students 
had studied line graphs in their classes, but had not formally studied the topics of 
gradient, compound measures or rates of change. 
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Procedure 
Each complete class of students was assigned to one of two conditions. Class 9Y3 
were asked to complete the set of problems with sparse context in the first session, 
then asked to complete a set of problems with realistic context in the second session. 
In the second session, one week later, students were divided into two groups; half 
were administered the changing level of water with time graph, half were 
administered the changing level of income with time graph. Class 9X3 completed the 
same tasks, in reverse order. 
In order to determine group differences, mathematics SAT scores were recorded for 
the children taking part in the study. The Key Stage 3 SAT tests had been taken by 
the children 1 month prior to the beginning of this study. 
Results 
Before looking at students’ performance on the problems, mathematics SAT scores 
were compared. The means for the two groups of students were 91.18 (Realistic to 
Sparse group) and 58.18 (Sparse to Realistic group, 1 absentee). A t-test showed a 
significant difference between the SAT scores of the two groups (t=8.2, p<0.001). An 
analysis of variance with repeated measures on problem type indicated no significant 
main effect of problem type (MSe=1.91, F=1.24, p>0.05) or for order (MSe=8.198, 
F=2.29, p>0.05) (see figure 1). The findings of Mevarech and Stern were not 
replicated in this study, but this could be due to the groups’ widely differing SAT 
scores, and the possibility of a ceiling effect for the group with the higher level of 
SAT achievement. 
Predictors of Improvement Between Trials 
It became apparent that boys showed a greater level of improvement between trials 
than did girls (F=4.099, p=0.042). This led to the conclusion that there was 
something different about the ways in which boys and girls approached these 
problems that caused the difference in level of improvement. The original aim of the 
study had been to demonstrate that the order of problem set (context) predicted 
improvement. Now that it was clear that some children were improving while others 
were not, it was important to find out what (if not order) was the cause of that 
improvement. 
The data were analysed again, this time looking at boys and girls separately. The first 
possibility considered was that improvement might depend on the type of explanation 
given (representing the strategy used) for solutions. Correlations were calculated 
between the incidence of the use of steepness in the first trial, incidence of the use of 
steepness in the second trial and improvement between trials (Table 1 shows 
correlations for girls, Table 2 shows correlations for boys). 
The correlations showed a marked difference between boys and girls, in terms of the 
effect of the explanation given on improvement between trials. 
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Table 1 
of the use of steepness in the first trial (STEEP1),
in the second trial (STEEP2) and improvement 
 trials for girls (n=22) 

provement STEEP1 STEEP2 

1 .492* .501* 

. .020 .017 

.492* 1 .910** 

.020 . .000 

.501* .910** 1 

.017 .000 . 

05 level (2-tailed). 

.01 level (2-tailed).
 

Table 2 
of the use of steepness in the first trial (STEEP1),
in the second trial (STEEP2) and improvement 
 trials for boys (n=23) 

provement STEEP1 STEEP2 

1 .071 -.164 

. .747 .454 

.071 1 .439* 

.747 . .036 

-.164 .439* 1 

.454 .036 . 

5 level (2-tailed). 
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(F=0.102, p=0.753). 11 of 23 boys gave explanations involving steepness in the first 
trial. 
Fisher’s z transformation shows that the difference between correlations observed for 
boys and girls, between use of steepness in an explanation in the first trial and in the 
second trial, is significant (z=3.3, p<0.001). Neither boys’ nor girls’ explanations 
were affected by the order of the problem contexts. As many explanations involving 
steepness were observed in first trials for sparse-context problems as for realistic-
context problems. 
The data were analysed for the original hypothesis again, that improvement would be 
predicted by order of problem contexts, but this time analysing data from boys and 
girls separately. For the girls, the order of problem contexts does not predict 
improvement between trials (F=0.269, p=0.609). For the boys, there is some evidence 
to suggest that order of problem contexts does predict improvement between trials 
(F=3.064, p=0.095).  

FUTURE PLANS 
A study will be planned with the aim of confirming and clarifying the findings of the 
present study. The lack of detail in terms of the strategies used by children to solve 
problems will be the major impetus for change. In order to collect more detailed 
information on the strategies used by the children, they will be asked to solve 
problems individually, with session recorded using either audio- or video-tape. This 
will solve a number of problems encountered in the previous study. In the next study, 
children will be asked to explain what they are thinking as they solve each problem. 
After thirty seconds of silence, they will be interrupted with a prompt, asking what 
they are thinking. This method has been used in similar studies with good results 
(Gallagher, de Lisi et al. 2000). Records of children’s answers and explanations will 
be used to classify children’s strategy for problems. 
The main areas that require clarification are in determining the mechanisms by which 
girls and boys improve between trials. Girls will be predicted to use similar strategies 
in both trials. Improvement made by girls would be predicted by the appropriateness 
of the strategy used on the first trial. In the present study, it was apparent that if girls 
used the concept of gradient (an appropriate strategy) for the first problem set then 
they were highly likely to use it in the second. What was not clear was the likelihood 
of repeating the use of inappropriate strategy. The increased level of detail hoped for 
in the planned study would help to clarify this point.  
Boys will be predicted to be more flexible in their strategy use. Boys’ strategy use in 
solving problems in realistic context will be predicted by the order of problem 
contexts. That is, if boys see the abstract problem set first, it will influence their 
strategy choice for the realistic problem set. The mechanism by which boys improve 
between trials is far from clear. The effect of the order of context was much greater 
for boys than for girls, but this was not explained by differences in patterns of 
strategy use between groups. The categorisation of strategies other than the use of 
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gradients is hoped to provide some insight into the changes in solution procedure 
made by boys in order to achieve the level of improvement noted in the present study. 

REFERENCES 
Anderson, J.R., L.M. Reder, et al. (1995). Applications and Misapplications of Cognitive 

Psychology to Mathematics Education. Pittsburgh, PA, Carnegie Mellon University  
Carr, M. and H. Davis (2001). "Gender differences in arithmetic strategy use: A function of 

skill and preference." Contemporary Educational Psychology 26(3): 330-347. 
Carr, M. and D. L. Jessup (1997). "Gender differences in first-grade mathematics strategy 

use: Social and metacognitive influences." Journal of Educational Psychology 89(2): 
318-328. 

Carr, M., D. L. Jessup, et al. (1999). "Gender differences in first-grade mathematics strategy 
use: Parent and teacher contributions." Journal for Research in Mathematics Education 
30(1): 20-46. 

Carraher, T. N., D. W. Carraher, et al. (1985). "Mathematics in the Streets and in Schools." 
British Journal of Developmental Psychology 3(MAR): 21-29. 

Davis, H. and M. Carr (2001). "Gender differences in mathematics strategy use - The 
influence of temperament." Learning and Individual Differences 13(1): 83-95. 

Fennema, E., T. P. Carpenter, et al. (1998). "A Longitudinal Study of Gender Differences in 
Young Children's Mathematical Thinking." Educational Researcher. 

Gallagher, A. M. and R. De Lisi (1994). "Gender Differences in Scholastic Aptitude-Test - 
Mathematics Problem-Solving among High-Ability Students." Journal of Educational 
Psychology 86(2): 204-211. 

Gallagher, A. M., R. de Lisi, et al. (2000). "Gender differences in advanced mathematical 
problem solving." Journal of Experimental Child Psychology 75(3): 165-190. 

Gray, E. M. and D. O. Tall (1994). "Duality, Ambiguity, and Flexibility - a Proceptual View 
of Simple Arithmetic." Journal for Research in Mathematics Education 25(2): 116-140. 

Lave, J. (1988). Cognition in Practice: Mind, Mathematics and Culture in Everyday Life. 
New York, Cambridge University Press. 

Mevarech, Z. R. and E. Stern (1997). "Interaction between knowledge and contexts on 
understanding abstract mathematical concepts." Journal of Experimental Child 
Psychology 65(1): 68-95. 

Saxe (1991). Culture and Cognitive Development: Studies in Mathematical Understanding. 
NJ, Erlbaum. 

 88


	GENDER DIFFERENCES IN KNOWLEDGE TRANSFER IN SCHOOL MATHEMATI
	TRANSFER OF KNOWLEDGE IN MATHEMATICS
	GENDER DIFFERENCES IN MATHEMATICAL COGNITION
	ATTEMPTED REPLICATION OF MEVARECH AND STERN (1997)
	Design
	Tasks
	Participants
	Procedure
	Results
	Predictors of Improvement Between Trials

	FUTURE PLANS
	REFERENCES


