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YEAR 10 STUDENTS' PROOFS OF A STATEMENT IN 
NUMBER/ALGEBRA AND THEIR RESPONSES TO RELATED 
MULTIPLE CHOICE ITEMS: LONGITUDINAL AND CROSS-

SECTIONAL COMPARISONS 
Dietmar Küchemann and Celia Hoyles 

Institute of Education, University of London 
We found, in two separate studies (1996 and 2002), that high attaining Year 10 
students in English schools tend to produce empirical proofs, though many of them 
seem able to appreciate some of the qualities of more powerful proofs. Students rate 
algebraic proofs highly, often for superficial reasons, though we found that in the 
second, longitudinal, study they were more discriminating in Year 10 than they had 
been in Year 9. 
INTRODUCTION 
Proof, where it involves deductive reasoning based on general relationships, 
distinguishes mathematics from science and from argumentation in daily life, where 
reasoning is more usually based on experimental evidence or analogy.  
Our work (eg, Healy and Hoyles, 2000; Küchemann and Hoyles, 2001) suggests that 
even when school students are able to appreciate the qualities of a mathematical 
proof, their own explanations may be low in insight and instead consist mainly of 
empirical support for the statement they are trying to prove. It is possible to find 
abundant evidence (eg Bell, 1976; Balacheff, 1988; Coe and Ruthven, 1994) of 
school students having difficulty in providing mathematical explanations and who 
seem to adopt proof schemes that are empirical or external (Harel and Sowder, 1998) 
rather than involving general mathematical relationships - ie who at best use what 
Bills and Rowland (1999) call ‘empirical’ rather than ‘structural’ generalisations. 
There are also studies to suggest that some students, having learnt a mathematical 
procedure, may show little interested in why it works (eg Hiebert and Wearne, 1988). 
On the other hand, even young children seem able to engage in sophisticated forms of 
explanation and justification, given a classroom culture with appropriate 
sociomathematical norms (see eg Yackel, 2001). 
THE STUDY 
In this paper we look particularly at responses to two questions (A3 and HA4) which 
were devised by Healy and Hoyles (ibid) and which formed part of a written test that 
they gave to 2459 high attaining Year 10 students in 1996. The same questions were 
given to a similar sample (N = 1512) of high attaining Year 10 students in 2002, in 
research undertaken by the authors for the Longitudinal Proof Project, which ran 
from 1999 to 2003. The aim was to look for similarities and contrasts in patterns of 
student response.  
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Students’ proof choices 
Question A3 had a multiple choice format (see Figure 1, below). Students were 
presented with various ‘proofs’ of the statement “When you add any 2 even numbers, 
your answer is always even” and were asked to choose the proof which was nearest to 
their own approach and which would get the best mark from their teacher. In 2002 
students were also asked which proof they liked best.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 1: Question A3 (2002 version) 

statement is true or false:

When you add any 2 even numbers, your answer is always even.

a) Whose answer do you like best? ........

b) Whose answer is closest to what you would do? ........

c) Whose answer would get the best mark from your teacher? ........

Fiona's answer

So Fiona says it's true

+
=

Aysha's answer

So Aysha says it's true

a is any whole number.

b is any whole number.

2a and 2b are any two even numbers.

2a + 2b = 2(a + b).

Brian's answer

So Brian says it's true

2 + 2 = 4 4 + 2 = 6

2 + 4 = 6 4 + 4 = 8

2 + 6 = 8 4 + 6 = 10

Deon's answer

So Deon says it's true

Even numbers end in 0, 2, 4, 6 or 8.
When you add any two of these the
answer will still end in 0, 2, 4, 6 or 8.

Coby's answer

So Coby says it's true

Even numbers are numbers that can be
divided by 2. When you add numbers with
a common factor, 2 in this case, the answer
will have the same common factor.

Eric's answer

So Eric says it's true

Let x = any whole number, y = any whole number.

x + y = z

z − x = y

z − y = x

z + z − (x + y) = x + y = 2z

Aysha, Brian, Coby, Deon, Eric and Fiona were trying to prove whether the following
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In HA4, students were asked to produce a proof for a similar statement to the one in 
A3 (this time concerning odd numbers). It was placed immediately after A3 on the 
test, in the belief that the options in A3 might help students devise a proof in HA4.  
Option A in A3 is a ‘structural’ proof, expressed in algebraic form. Option B is 
empirical, based on just 6 examples (albeit fairly systematic ones). C is structural, 
like A, but expressed in narrative form. D is an exhaustive proof. It says something 
about the properties of all even numbers (namely, that in our number system they 
happen to end in 0, 2, 4, etc), but is essentially empirical rather than structural. It 
describes how even numbers behave, but not why. E is a pseudo or nonsense proof 
but, like A, is expressed in algebraic form. Option F was intended to be a structural 
proof, like A and C, but expressed ‘visually’, with sets of dots representing generic 
examples of even numbers. However, in retrospect the option is perhaps too cryptic, 
since the sets of dots can easily be interpreted as representing specific even numbers, 
making it an empirical proof. In the event, F was not a popular choice, perhaps 
because of this ambiguity, and we do not discuss it further in this paper. 
Options A, C and D are all valid proofs of the given statement, in that they verify that 
the statement is true. However, A and C might be thought to be more satisfying (and 
educationally more useful) in that they also illuminate the statement, ie explain why it 
is true. Option B confirms the truth of the statement, but does not prove it, while E is 
nonsense. 
The frequencies of the Year 10 students’ choices in 2002 are shown in Table 1, 
below. The table lists the six options, in decreasing rank order of popularity, for the 
three criteria of like best, own approach, and best mark. As is immediately apparent, 
there are some dramatic changes in order for the different criteria. 
 Year 10 choices for A3  LIKE best OWN approach BEST mark 

A ALGEBRA-structure  D 35% B 41% E 38% 

B EMPIRICAL-6 examples  B 17% D 29% A 24% 

C NARRATIVE-structure  C 17% A 13% C 20% 

D EMPIRICAL-exhaustive  A 13% C 9% D 9% 

E ALGEBRA-nonsense  F 10% F 3% B 3% 

F VISUAL-structure  E 6% E 3% F 1% 

c9 miscellaneous  c9 2% c9 3% c9 5% 

Table 1: Y10 students’ choice frequencies for A3 in 2002 (N = 1512) 

Looking first at the algebraic proofs, few students seem to like them, perhaps because 
they find them difficult (A, 13%) or impossible (E, 6%) to understand; even fewer 
claim that they are close to their own approach, perhaps for the same reasons; 
however, they are the two most popular choices for best mark, with option E (38%), 
which is the more algebraic-looking of the two, even more popular than A (24%). 
This latter result is perhaps not surprising since in the popular imagination high 
powered maths is commonly equated with algebra. 
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As far as the empirical proofs are concerned (B and D), these are the two most 
popular choices for like best and for own approach, perhaps in large measure because 
they are relatively easy to understand. Interestingly, D is the most popular choice for 
like best (35% compared to 17% for B) and B the most popular for own approach 
(41% compared to 29% for D). This suggests that many students can appreciate that 
D is a powerful proof, but admit that B is closer to their own approach, even though it 
is more limited. When it comes to best mark, these two proofs are ranked very low, 
perhaps in part because they are not algebraic, but perhaps also because students 
recognise their limitations (namely that D is not general and B is not illuminating). 
Finally, many students seemed able to appreciate the structural quality of proof C: 
though few chose it for own approach (9%), a substantial minority chose it for like 
best (17%) and also for best mark (20%) despite it being in narrative rather than 
algebraic form. 
In the Longitudinal Proof Project, the students were given a similar question to A3 in 
Years 8 and 9. However, there were only 4 options in Year 8, non of which were 
algebraic, and only 5 options in Year 9. Also, the content, though always involving 
number/algebra, changed from year to year. Thus it is not possible to make simple 
longitudinal comparisons, although one can discern some trends. For example, there 
are some interesting changes in the best mark frequencies for each year’s narrative-
structural proof. In Year 9, this proof has a frequency of just 6% and is swamped by 
the two algebra proofs (48% and 28%), despite its strong showing in Year 8 (53%). 
However, its popularity increases again in Year 10 (20%), suggesting that the 
students are beginning to judge algebraic proofs more critically. 
Comparisons with 1996 
The version of A3 used with Year 10 students in 2002 was the same as the one used 
in 1996 with Year 10 students in the predecessor project, except for the addition of 
the like best criterion in the later version. In both cases the sample consisted of 
students in top sets from randomly selected schools, and though nothing further was 
undertaken to produce comparable samples, the response frequencies shown in Table 
2 below suggest that the samples were in fact remarkably similar.  

Distribution of choices: algebra (A3) 
D 

empirical-
exhaustive 

B 
empirical 

6 examples 

C 
narrative-
structure 

F 
visual- 

structure 

A 
algebra- 
structure 

E 
algebra- 
nonsense 

 
 
Criterion for  
choice 

1996 
% 

2002 
% 

1996 
% 

2002 
% 

1996 
% 

2002 
% 

1996 
% 

2002 
% 

1996 
% 

2002 
% 

1996 
% 

2002 
% 

like best  35  17  17  10  13  6 
own approach 29 29 24 41 17 9 16 3 12 13 2 3 
best mark 7 9 3 3 18 20 9 1 22 24 41 38 

Note: Underlined frequencies are ‘substantially’ higher than their other-year 
counterparts 
Table 2: Y10 students’ choice frequencies for A3 in 1996 (N = 2459) and 2002 (N = 1512) 
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The like best criterion was added because we had noticed that without it (as for 
example in our Year 8 version of A3), there seemed to be a tendency, especially 
amongst boys (Küchemann and Hoyles, ibid), to choose an option that they liked for 
own approach, rather than one that was genuinely similar to what they would have 
constructed themselves. It is a moot point whether one should ‘improve’ questions in 
this way, as it makes comparisons more difficult - and it renders a detailed discussion 
of the frequencies in Table 2 beyond the scope of this short paper. However, it is 
interesting to note the large increase in the own approach frequency for the empirical 
proof B, which perhaps indicates a growth in a ‘pragmatic’, data-generating approach 
to mathematics. 
Students’ constructive proofs 
Question HA4, which asked for a proof of the statement “When you add any 2 odd 
numbers, your answer is always even”, appeared immediately after A3 on the 1996 
and 2002 written tests. Table 3 gives an indication of the type (but not the quality) of 
proof that students constructed in 2002. The 1996 frequencies are broadly similar. 
What is immediately apparent is the popularity of the purely empirical (31%) and 
empirical-exhaustive (19%) approaches, which chimes with the own approach 
frequencies for A3. At the same time, a sizeable proportion of students (17%) 
embarked on narrative proofs in which the structure of odd numbers is described 
effectively. Very few students, though, attempted an algebraic proof, which again 
echoes the own approach (and like best) frequencies for the algebra proofs in A3.  
HA4: Proof types 
EMPIRICAL 1 example 2%   
 several examples 15%   
 'crucial' example 14% 30% 31% 
EMPIRICAL-EXHAUSTIVE Odds end in 1,3,5,7,9 13%   
 fairly exhaustive 3%   
 very exhaustive 4% 7% 19% 
ALGEBRA NO structure 3%   
 PARTIAL structure: a=even, a+1=odd 2%   
 FULL structure: 2n+1 = odd 3%   
NARRATIVE NO structure 1%   
 PARTIAL structure: 'up in 2s' 1%   
 FULL structure: odd = even plus 1 17% 18%  
VISUAL NO structure 0%   
 PARTIAL structure 0%   

 FULL structure: OOOO 
OOOOO =  odd 6% 6%  

Other  16%   

Table 3: Frequency of proof types of Y10 students’ constructive proofs in 2002 (N = 1512) 
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CONCLUSION 
Evidence from the Longitudinal Proof Project, and its predecessor, suggests that even 
high attaining students in English schools have a strong propensity to construct 
empirical rather than structural proofs. At the same time, many students seem able to 
appreciate some of the qualities of more powerful proofs, even if they cannot, or do 
not attempt to, construct such proofs themselves. This suggests that carefully 
designed teaching which helps students evaluate and characterise different kinds of 
proofs could have a marked impact on the quality of students’ explanations, provided 
it is sustained and built upon over time.  We are currently exploring ways of doing 
this in our new DfES-funded project, Developing Research-Informed Materials in 
Mathematical Reasoning for Teachers. 
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