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ACCELERATED LEARNING OF PROBLEM SOLVING SKILLS 
Chris Day 

Leeds University 
Two year 7 classes in a Manchester school were taught multiplication, division and 
fractions.  An experimental group was taught these numerical skills, but their 
teaching program included practical problem solving, based upon activity theory 
principles, as an integral component.  A control group practised their number skills 
in more traditional abstract contexts.  As expected, the control group was not able to 
transfer number fluency to practical problem solving tasks. The experimental group, 
however, demonstrated a problem solving ability at higher GCSE level and achieved 
a significant improvement in mean scores over the dynamic assessment that followed 
the teaching program. The dynamic core of this assessment was computer based and 
there was a strong negative relationship between hints given by the computer and 
residual gains.  Analyses of the computer records have provided important clues to 
guide a qualitative analysis of video records of the teaching program. 
Engeström (1999) has suggested that a study of mediating artefacts (such as 
mathematical models) is centrally important in research into practical problem 
solving.  Within this ‘Activity Theory’ perspective, theory is seen to be of greatest 
importance when it can be used to mediate a process of practical activity.  In the 
teaching program summarised below there is no separation between presentation of 
theory and practice and the practical creative nature of mathematical tools became 
directly apparent to the students while they were solving problems.  The teaching 
material was in turn prepared on the basis of detailed analyses of practical problems 
involving the notion of rate already carried out by the Gal’perin School (See Haenen 
1996 for a more detailed account of this teaching method).   
The experimental teaching programme focused on teaching basic number skills of 
multiplication, division and fractions in a meaningful context.  I chose to develop 
these skills in the context of problems on rate of processes, for example the rate of 
movement, rate of production or rate of flow in water, because the students will 
encounter these problems regularly in later studies.  I chose the notion of rate as a 
practical (substantive) generalization that would be widely applicable in practical 
activity.  I looked at this learning in terms of developing practical creative abilities 
rather than simply of acquiring abstract knowledge of formal calculation rules.  This 
diagram shows the key components of actions that were taught. 
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Gal’perin’s Activity Theory suggests (ibid) that the process of orientation, of 
knowing what to do next at any point, requires identifying the main operations to 
carry out and the order in which to do them.  An appropriate control model must be 
taught and developed in the course of problem solving activity. A more or less 
developed form of this model can then be brought to mind when it is required during 
practical problem solving.  Orienting activity will then appear as ‘attention’, which 
directs itself towards the model.  This attention is thus an abbreviated and condensed 
control procedure for practical activity.  An example of a problem solving action 
from the teaching program (fig 1) was: ‘A pump produces 100 litres of oil in 5 hours.  
How much oil would be produced in one hour?’   
In this example, a formal mathematical notion was introduced as a model, which 
acted as a control for the action. The process of orientation, of knowing what to do 
next at any point, was also taught, in this case by means of two cards (shown below), 
which indicate the main operations to carry out in simple calculations, and the order 
in which to do them. These instructions were operations in verbal form and they were 
abbreviated during practice to a coded form ‘1,2,3,4’ or ‘1 to 6’and then, with more 
practice to a simple awareness of what to do next, or ‘attention’.   
 
 
 
 
 
 
 
 
 
 
Within this teaching method practical actions were converted to words and then to 
mental actions.  Actions were first presented in materialised form as diagrams. These 
coded actions changed to a verbal form as they were spoken aloud. During practice, 
silent speech ‘to oneself’ was abbreviated and condensed and was eventually no 
longer accessible to introspection.  In this process, the actions changed in their level 
of generalisation as a deeper understanding of rate formed from notions of speed, 
wages, flow etc. Abbreviation and fluency of all three aspects of the actions 
(orientation, execution and control) was developed in order to establish a sound long-
term memory of the problem solving skills (see Talyzina 1981).  A variety of 
techniques were employed to develop these skills and the problem solving tasks were 
gradually increased in difficulty until they eventually reached a level of difficulty 
presented in higher-level GCSE courses. For example: 

CARD 1 

In each question you must find: 

1) Who is carrying out the action? 

2) What is the person or thing carrying 

out the action getting through, 

producing or using up?  (S =? ) 

3) How long do they take? (T=?) 

4) How much do they get done in one 

unit of time? (V= ?) 

Card No 2 

1)  How many actions are going on? 

2)  Do they begin and finish together? 

Do the actions work:  a)  together 

                                     b)  against each other? 

4) What is known in the task about overall 
production values (So, To, Vo) 

5) What is known about component action values 

(S1, T1, and V1) 

6) What do you need to find in the task? 

From Informal Proceedings 24-1 (BSRLM) available at bsrlm.org.uk © the author

McNamara, O. (Ed.) Proceedings of the British Society for Research into Learning Mathematics 24(1) February 2004



 

21 

 ‘Two bulls charge each other with a combined speed of [40 3/10 mps] and meet          
after [16 seconds].  The speed of the first bull is [12 1/5 mps].  [How far would the 
second bull travel] in [this time] if he went [ 2 1/10  mps slower ]?’ 
Results:   The diagram below illustrates the experimental design: 

Initial baseline measures compared the children from the two classes (the 
experimental and control groups) in terms of ability to complete questions on 
multiplication, division and fractions.  These were questions taken from the normal 
school end of unit test on this topic. Average scores on these tests did not vary 
significantly between the classes. The mean overall scores in these initial tests were 
61% and 63% (table 1).  These scores indicated that children were generally 
competent to begin work on the elementary introductory examples in the teaching 
program. Initial scores on further practical problem solving questions about rates of 
processes were lower, as would be expected, but again showed no significant 
differences between the two groups:                                                              
 
 
 
 
The control group followed the normal school program, which involved practice of 
the number skills in more abstract contexts.  I expected that the control group would 
not be able to transfer their number skills to practical problem solving tasks. This was 
in accord with the principles of activity theory, which explicitly propose that mastery 
depends on the quality of particular orienting bases (cards one and two) employed, 
and is not an ingredient that is added separately from the material that is taught.  
At the end of the program I looked both at what the children could do in formal 
numerical questions from the school end of unit test and at how easily they could 
apply this knowledge to problem solving questions on rate, with help from an hour of 
computer based teaching.  In this three-part dynamic assessment, a computer-based 
assisted practice session separated two isometrically similar formal unassisted tests 
(see Day 2001 pp. 176-207 for a discussion of this procedure). No significant 
differences emerged between the groups in their measured abilities at numerical 
questions on these topics. A two-way Repeated-Measures ANOVA analysis of the 
number test scores showed no significant differences between classes (see Chart 1 ). 
An analysis of rate test scores showed a significant difference between experimental 
group post-tests (p<0.01) and a significant difference between the two groups overall 

                              Initial base  Teaching --------       First      Computer     Second  
                               line test       program                post test    practice        post test  
Experimental gp.       (IT)          ------------------        (T1)          (P1)              (T2) 
Control gp.                (IT)           -----------------         (T1)         (P1)              (T2) 

 Experimental group Control group    
Variable mean sd mean sd n t p 
Pre-test  (number -  %) 61 16.5 63 16.5 23 0.6 0.57 

Pre-test  (rate -  %) 18.6 18.6 22.9 21.4 26 -1 0.42 

Table 1
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(p<0.05) (see Chart 2). The experimental group scores on rate improved from a mean 
of 26% to 41% over the dynamic assessment and were more than twice as high as 
those of  the control group in the final post test.  
 
 
 
 
 
 
 
 
 
 
 Chart 1  Chart 2 
The next table summarises the comparison between mean scores on the pre-test and 
mean scores on the post-tests (T1, T2) for the two groups. 
 
 
 
 
 
 
 
 
I have already shown (Day 2001) that the rate of adaptation to similar but more 
complex problems can provide important information about a child’s ‘Zone of 
Proximal Development’.  In this work I demonstrated that the number of hints given 
during interaction with a tutor can provide a useful (inverse) index of intellectual 
maturity and readiness for the more difficult problems.  Because of time constraints 
within the busy school teaching program, theoretically based hints, generated from 
the teaching program, were given during a computer-based practice until all the 
problems were solved. Amount of help required was recorded, categorized and 
compared with the mathematical gains made in unassisted performance over the two 
tests carried out before and after the computer-assisted session. 

Descriptive statistics and t values for experimental and control groups 
         

 
Experimental 

group Control group     
Variable mean sd mean sd n t p  
Pre-test  (number) 21.3 5.5 20.6 5.2 23 0.6 0.57  
Post-test 1  (number) 20.1 6.6 23.3 4.8 26 -2 0.05  
Post-test 2  (number) 22 5.9 18.8 7.4 12 1.5 0.16  
Pre-test  (rate)% 18.6 18.6 22.9 21.4 26 -1 0.42  
Post-test 1  (rate)% 25.7 25.7 22.9 25.7 26 0.3 0.8  
Post-test 2  (rate)% 41.4 31.4 20.0 24.3 26 2.6 *0.014  

 
table 2  
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                Rg       t1 num      t1 rate 
t1 num   0.1 
t1 rate   -0.030      *0.55 
Hts         *-0.31     *-0.46      *-0.52 

*P < 0.05 
table 3 

[In order to minimise validity problems due to effects of the distribution of results in 
test T1 on results in test T2, mathematical gains over the practice session were 
defined by residual gains in test two, above or below what was predicted by the 
overall trend of results.  (See Elliot and Lauchlan (1997), Embretson (1990) for a 
discussion of the reliability of gain scores measured by test, train, retest procedures).  
Unreliability due to unequal scaling effects for level of difficulty between test items 
remains, but scaling defects will be the same in both experimental and control groups 
and changes of scale that occur because items that become easier in the second test 
will also be generally replicated over the two groups. Use of the second post-test will 
therefore not affect the reliability of my comparison between the two classes]. 
Mean residual gains and hints given for the two groups are shown in the diagrams 
below. The negative mean residual gains for the control group (fig.2) suggest that the 
control group children were unable to gain as much from the practice sessions as 
children from the experimental group.  They could not transfer their formal 
mathematical knowledge to their practice session on the computer.  This was, of 
course, what was expected. These results largely replicated the results of earlier 
studies and confirm the number of hints needed in practice to be a useful indicator of 
proximal development zones.  Control group children received almost 50% more 
assistance on average (fig. 3) than children from the experimental group.  
 
 
 
 
 
 
It can be seen from table 3 that the number of hints provided was negatively 
correlated with gains that were made and with scores on the first post-test. I found, as 
expected, that lower scores on the post-test meant 
that, generally, more help would be needed in 
completing the practice papers and lower gains 
would be made during practice.  The amount of 
help needed was clearly an important factor in 
predicting these gains. In a multiple regression 
(table 4) the number of hints (hts) accounted for 
13% of variation in residual gain scores over and above the general mathematics 
ability measured in the pre-test and a specific test of the work (t1, rate).   
 
 
 

 
 
 
 
STEPS TABLE 
STEP df    deviation reduced    df2 F                      rsq chg% 
1(0-1)  1    0.97                         27  0.25 ns0.010           1 
2(1-2)  1   0.95                          26 0.24  ns0.009           1 
3(2-3)  1   13.18                        25 3.64  P<.05              13   

Model                    
0 (no predictors)   
1 (pre)                   
2 (pre,t1)               
3 (pre,t1,hts)          
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Computer-based hints have thus been shown to have some validity as an index of a 
students progress and can help to guide a more descriptive account of the program. 
Qualitative results: This final diagram shows hints plotted against residual gains for 
two children who completed the entire 
program. These children (Louise and Lisa) 
sat together in class, achieved equal scores 
in the second post-test and made similar 
mathematical gains. Lisa, however, needed 
far more help in completing the computer-
based practice than Louise.   Video records 
of these two children confirm that Louise 
was far more influential in interactions 
between the two children.  She seemed to 
have a greater mastery of the topic than 
Lisa and because of this would be expected to progress more quickly in future. The 
imbalance in their working relationship was only indicated quantitatively by amount 
of help required during practice.  An inductive analysis of the data, beginning with 
video transcript records of Lisa and Laura and then looking at other related events 
that were observed has modified my view of the teaching activity. As I review the 
data looking for events that contradict my original idea, I hope to arrive at set of ideas 
developed within an integrated and well-defined theory that could describe aspects of 
the teaching program in a way that will provide suggestions for future improvements. 
A model that accounts for the qualitative observations will be presented later. 
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