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Recent literature has pointed out pedagogical obstacles associated with the use of 
computational environments on the learning of mathematics. In this paper, we focus 
on the pedagogical role of computer’s inherent limitations on the development of 
learners’ concept images of derivative and limit. In particular, we intend to discuss 
how the approach to these concepts can be properly designed to prompt a positive 
conversion of those limitations to the enrichment of concept images. 

INTRODUCTION 
The aim of this research is to discuss how apparent contradictions between 
computational representations and associated theoretical formulation can be 
positively converted to enrich students’ concept image of derivative and limit. We 
consider theoretical-computational conflict as any situation where a computational 
representation for an object is (at least potentially) contradictory with the associated 
mathematical theory. In particular, numerical calculation with machine accuracy 
cannot be performed in a way that corresponds exactly to the mathematical theory of 
limits. Literature provides some examples in which a narrowing effect takes place: 
the intrinsic characteristics of the computational representation lead to limitations in 
the concept images developed by learners (see Hunter, Monaghan and Roper (1993)). 
On the other hand, we hypothesize that, if theoretical-computational conflicts are 
emphasized, rather than avoided, they may contribute not to narrowing, but to 
enrichment of concept images. In this paper, we present results of an experiment, in 
which a sample of six undergraduate students dealt with conflict situations. 

CONCEPT IMAGES AND COGNITIVE UNITS 
Tall and Vinner (1981) define concept image to be the total cognitive structure 
associated with a mathematical concept in an individual’s mind. It includes all the 
mental ideas related to a given concept, and is continually constructed as the 
individual matures, changing with new stimuli and experiences of all kinds. The 
concept image may (or not) be associated to a statement used to specify that concept, 
named concept definition by the authors. A concept definition, in its turn, may (or 
not) be consistent with the formal mathematical definition, that is, the concept 
definition usually accepted by the mathematical community (see also Barnard and 
Tall (1997), Vinner (1983), Tall (2000)). On the other hand, as many authors claim 
(see Cornu (1991), Tall and Vinner (1981)), the main ideas used by human beings to 
build further theoretical developments often do not come out from formal definitions, 
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but from related intuitive ideas. Therefore, the capacity to recall the formal definition 
itself is not necessarily associated to a rich concept image. 
Barnard and Tall (1997) introduced the term cognitive unit for a chunk of the concept 
image on which an individual focuses attention at a given time. Cognitive units may 
be symbols, representations or any other aspects related to the concept. Thurston 
(1990) observed that the understanding of mathematics involves a process of mental 
compression of ideas that can then be quickly recalled and used. In this way, a rich 
concept image should include, not only the formal definition, but many linkages 
within and between cognitive units. 

NEGATIVE EFFECTS OF THE USE OF COMPUTERS ON MATHEMATICS 
TEACHING: NARROWING CONCEPT IMAGES 
In this investigation, we focus on the positive use of technology to mathematics 
learning. However, it is important to remark that research shows that misused 
computational environments can have negative (or at least innocuous) effects. The 
theory quoted above suggests, in particular, that teaching the concept of derivative 
must include different approaches and representations, to enable learners to build up 
multiple and flexible connections between cognitive units. Each representation gives 
emphasis to certain aspects of the concept, but also blots out others in the same way. 
Tall (2000) affirms that the focus on certain aspects and the negligence of others may 
result in the atrophy of the neglected ones. For instance, Hunter et al. (1993) 
observed that students using software Derive did not need to substitute values to get a 
table and sketch functions’ graphs. As a result, students did not develop the skill of 
evaluating functions by substitution. Even students who could perform the evaluation 
before the course seemed to have lost the skill afterwards. 
In Brazil, Abrahão (1998) observed the reactions of secondary teachers dealing with 
function graphs produced by computers and graphic calculators. During the 
experiment, the teachers hesitated to consider that computers can provide “mistaken” 
or “incomplete” results, due to software limitations or visualization windows 
inadequacy. Those results were often accepted by participants as correct without 
query, even when clearly clashing to their prior knowledge of the topic. Laudares and 
Lachini (2000) observed the introduction of a computer laboratory for the teaching of 
Calculus in a large Brazilian university, which had been following a traditional 
approach before. The interviews with the Calculus teachers showed that most of them 
believed that laboratory activities would be a waste of time, which should be spent 
with classroom instruction, and the use of computer should be restricted to very 
heavy calculations. The authors report that the laboratory activities were restricted to 
mechanical tasks, unlinked to the theory studied in classroom. As a consequence, 
students seem to have no understanding of those activities. The authors conclude that 
the use of technology can constitute a important alternative, however it is necessary 
to encourage the development of a critical perspective by students. 
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USING THEORETICAL-COMPUTATIONAL CONFLICTS TO ENRICH 
CONCEPT IMAGES 
Many authors agree that the effects of computers on mathematics learning do not 
depend only on any inherent feature of the devices themselves. Rather, such effects 
are consequent from the way they are (mis)used (see, for example, Tall (2000), 
Belfort and Guimarães (1998)). The experiment reported by Hunter et al. (1993) in 
particular, has uncovered a phenomenon of narrowing of concept images: the 
intrinsic characteristics of the computational representation led to limitations on the 
concept images developed by learners. Generally speaking, many limitations of 
computational representations for mathematical concepts arise from the algorithms’ 

finite structure. Consider the graphs of f (x) = 1
x −1

 and g(x) = 1
(x −1)2  as drawn by 

Maple (figure 1). Both functions have a vertical asymptote at x = 1, but this line only 
appears on the picture of the graph of f. Actually, the software do not identify the 
existence of the asymptote for either function. The vertical line shown is drawn due 
to the joining of one point on the left of the discontinuity with one on its right, that is, 
the software considers the line as part of the graph. The same does not occur in the 
case of g because on either side of x = 1 the function is positive.  

  

Figure 1.  The graphs of f (x) = 1
x −1

  (with a ‘fake’ asymptote) and 2)1(
1)(
−

=
x

xg . 

To focus on such situations, Giraldo (2001) names a theoretical-computational 
conflict to be any situation in which a computational representation is apparently 
contradictory to the associated theoretical formulation (see also Giraldo and 
Carvalho, 2002).  

    

Figure 2. A theoretical-computational conflict observed through local magnification. 

Another example of a theoretical-computational conflict is shown on figure 2 above, 
displaying the local magnification of , around the point y = 2x2 x0 =1, performed by 
Maple. Since the curve is differentiable, it should acquire the aspect of a straight line 
when highly magnified. Rather, due to floating point errors, for very small values of 
graphic windows ranges (on orders lower than ) it looks like a polygon. 610−

From Informal Proceedings 22-3 (BSRLM) available at bsrlm.org.uk © the author - 39 

Pope, S. (Ed.) Proceedings of the British Society for Research into Learning Mathematics 22(3) November 2002



  

We believe the narrowing effect observed in Hunter, Monaghan and Roper’s 
experiment was due not to the occurrence of theoretical-computational conflicts, but, 
to their absence. Overuse of computational environments—especially when not 
confronted by other forms of representation— may contribute to the conception that 
the limitations of the representation are characteristics of the mathematical concept 
itself, leading to the development of narrowed concept images. Sierpinska (1992) 
remarks that awareness of the limitations of each form of representation, and that 
they represent the same concept, are fundamental for the understanding of functions. 
Our hypothesis is that, if theoretical-computational conflicts are emphasized, rather 
than avoided, the cognitive role of inherent characteristics of each form of 
representation may have a positive conversion—they may contribute not to the 
narrowing, but to the enrichment of concept images. 

 
Figure 3.  The graph of 
h(x) = x2 + 1 , for 
−100 ≤ x ≤ 100, −100 ≤ x ≤ 100.

To investigate this hypothesis, we presented a 
sample of six first year undergraduate students in 
Brazil with theoretical-computational conflicts in 
individual interviews. One question considered the 
function h(x) = x2 +1 and the graph sketched by 
Maple for  (figure 3). The 
conflict here is between the appearance of the graph 
at the origin (which seemed to have a ‘corner’) and 
the formula which was differentiable. Students were 
free to manipulate the software as they wanted. Each 
was asked the following question: 

(x,y) ∈ [−100,100]2

You see on computer’s screen the graph of the function h(x) = x2 +1, sketched for 
−100 ≤ x ≤100  and −100 ≤ x ≤100 . Do you think this function has a derivative? 

Figure 4 summarizes the strategies of three of the students. The continuous boxes 
represent the question – does h have a derivative – and its possible answers – h has a 
derivative or h doesn’t have a derivative. The dashed boxes represent the two given 
representations for h – computational (graph) and algebraic. The arrows indicate the 
interviewee’s actions and are enumerated in chronological order. The boldface arrow 
indicates interviewee’s decisive action, that is the one that led to the conclusion. 
We will focus on Francisco’s strategy, translated from Portuguese. He said: 

Francisco: For example, if you made x2 , it'd be x . It'd have a corner. But you've put 
+1 there, you can't take it off the square root completely, right? ... Visually 
it isn't a corner, then, it'd have a derivative. I'm speaking in visual terms. 
Now, let's speak algebraically. Indeed, algebraically, if you differentiate, 
you'll manage to derive, then, it's differentiable. ... Can we zoom in here? 
[zooms in.] Yes, it looks like a parabola. Zooming in there, you see clearly 
how it's differentiable. 
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After concluding about the differentiability of h, Francisco spontaneously went on 
studying the function. He commented: 

Francisco: That would be a good question. It looks like a [straight] line, or is it a line? 
... I know it has a derivative! I'll try to derive it to see if it is a line or not. 
[calculates the derivative] Look! This function will have a different slope 
for each point. It's not like the modulus function, which doesn't have a 
derivative at 0, but has the same derivative at the positive side of x and the 
same one at the negative side for all the points. This function is different, it 
will be close to the modulus function at +∞  and ∞− . It will be close, but 
for each point it will have a different derivative. So, it looks like a line, but 
is not a line. 

 
Figure 4: Participants’ strategies on investigating the differentiability of h. 

DISCUSSION 
As we may see from the excerpts above, Francisco undertakes flexible connections 
between computational and algebraic representations in the course of the interview. 
His conclusion about the differentiability of h is grounded on the algebraic 
representation—he argues his case by applying the formulae. Furthermore, he makes 
use of the computational representation, by zooming in the graph, to build up a 
broader understanding of the local function behavior. However, the point we 
underline is that Francisco spontaneously goes further. After giving the answer for 
the proposed question, he formulates another question himself: Is it really a straight 
line or does it only look like a straight line? In this new investigation, another 
cognitive unit is triggered: If the derivative is not constant, then the primitive function 
is not a straight line. The formulation of the question, which activated a new 
cognitive unit, was motivated by a theoretical-computational conflict—the graph, as 
seen on the screen, did not match with the given algebraic expression. 

 

From Informal Proceedings 22-3 (BSRLM) available at bsrlm.org.uk © the author - 41 

Pope, S. (Ed.) Proceedings of the British Society for Research into Learning Mathematics 22(3) November 2002



  

REFERENCES 
Abrahão, A.M.C.: 1998, O comportamento de professores frente a alguns gráficos de 
funções f : R → R  obtidos com novas tecnologias. Dissertação de Mestrado, 
PUC/RJ, Brazil. 
Barnard, A.D. and Tall, D.: 1997, ‘Cognitive units, connections, and mathematical 
proof ’. Proceedings of the 21st PME Conference, Lahti, Finland, 2, 41-48. 
Belfort, E. and Guimarães, L.C.: 1998, ‘Uma experiência com software educativo na 
formação continuada de professores de matemática’. Anais do VI Encontro Nacional 
de Educação Matemática, São Leopoldo, Brasil, II, 376-379. 
Cornu, B.: 1991, ‘Limits’. In D.O. Tall (Ed.), Advanced Mathematical Thinking (pp. 
153-166). Dordrecht: Kluwer. 
Giraldo, V.: 2001, Magnificação local e conflitos téorico-computacionais. Exame de 
qualificação, Programa de Engenharia de Sistemas e Computação, COPPE/UFRJ, Rio 
de Janeiro, Brazil. 
Giraldo, V. and Carvalho, L.M.: 2002, ‘Local Magnification and Theoretical-
Computational Conflicts’. Proceedings of the 26th PME Conference, Norwich, 
England, 1, 277. 
Hunter, M., Monaghan, J.D. and Roper, T.: 1993, ‘The effect of computer algebra use 
on students’ Algebraic Thinking’. Working Papers for ESCR Algebra Seminar, 
Institute of Education. 
Laudares, J.B. and Lachini, J.: 2000, ‘O uso do computador no ensino de matemática 
na graduação’. 23a Reunião Anual da Associação Nacional de Pós-Graduação e 
Pesquisa em Educação, Brasília, Brazil, 32-43. 
Sierpinska, A.: 1992, ‘On understanding the notion of function’, In Harel, G and 
Dubinsky, E. (Eds.), MAA Notes and Report Series (pp. 25-58). 
Tall, D.O.: 2000, ‘Cognitive development in advanced mathematics using 
technology’. Mathematics Education Research Journal, 12(3), 210-230. 
Tall, D.O. and Vinner, S.: 1981, ‘Concept image and concept definition in 
mathematics with special reference to limits and continuity’. Educational Studies in 
Mathematics, 12, 151-169. 
Thurston, W.P.: 1990, ‘Mathematical Education’. Notices of the American 
Mathematical Society, 37(7), 844-850. 
Vinner, S.: 1983, ‘Concept definition, concept image and the notion of function’. The 
International Journal of Mathematical Education in Science and Technology, 14, 
293-305. 

From Informal Proceedings 22-3 (BSRLM) available at bsrlm.org.uk © the author - 42 

Pope, S. (Ed.) Proceedings of the British Society for Research into Learning Mathematics 22(3) November 2002


	THEORETICAL-COMPUTATIONAL CONFLICTS  AND THE CONCEPT IMAGE OF DERIVATIVE 
	INTRODUCTION 
	CONCEPT IMAGES AND COGNITIVE UNITS 
	NEGATIVE EFFECTS OF THE USE OF COMPUTERS ON MATHEMATICS TEACHING: NARROWING CONCEPT IMAGES 
	USING THEORETICAL-COMPUTATIONAL CONFLICTS TO ENRICH CONCEPT IMAGES 
	DISCUSSION 
	REFERENCES 


