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A new property of flexibility in equation solving: Making connections  
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Algebra involves various activities including transformational activities 
that are mainly about solving equations. Fluency (or flexibility) in these 
activities is important. Several researchers have proposed 
conceptualisations of flexibility in equation solving. This paper makes a 
reflection about flexibility in equation solving that contributes to the 
extension of Star and Seifert’s operationalisation. Examples are used as 
context for the reflection. The need for another property of flexibility, 
namely making connections, is suggested to deepen investigations of 
students’ flexibility in equation solving and its provision in teaching. 
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Introduction  

Making connections across mathematical and other learning areas recently has been a 
focus of school curricula across the world including in Australia and the USA. The 
desire for connections in mathematics is yet not new. The National Council of 
Teachers of Mathematics (NCTM) called for opportunities for students to experience 
the connections and interplay of various mathematical topics in their Curriculum and 
Evaluation Standards for School Mathematics document in 1989. This desire has 
persisted in the associated updated documents (e.g., NCTM, 2014) because students 
develop key competencies as a result of experiencing connections in mathematics. 
Students link conceptual and procedural knowledge, recognise equivalent 
representations of the same concept, use the connections among mathematical topics 
and see mathematics as an integrated whole, and use mathematics in daily life 
activities (Coxford, 1995).  

Algebra learning plays an important role for students in college level studies. 
Success in algebra, nevertheless, is an ongoing concern for educators as students’ 
algebra learning outcomes are sometimes poor in both national (e.g., National 
Assessment Program – Literacy and Numeracy [NAPLAN]) and international 
assessments (e.g., Trends in International Mathematics and Science Studies 
[TIMSS]). Algebra involves various activities including representational, 
transformational, and generalizing and justifying activities (Kilpatrick et al., 2001). 
Transformational activities are rule-based activities which are chiefly about collecting 
like terms, factoring, expanding, substituting, simplifying expressions, and solving 
equations (e.g., Find x if 4(x+3)=2x+19) (Kilpatrick et al., 2001). Fluency (or 
flexibility) in these activities is important, but usually students do not truly see the 
aim and structure of the procedures (McCallum et al., 2010). For instance, only 15 
percent of Year 9 Victorian students (in Australia) gave the correct answer to the 
transformational question: 2(2x–3)+2+?=7x–4 (Sullivan, 2011).  

Several researchers have proposed operationalisations on flexibility in 
equation solving (see Newton et al., 2010). One of the most relevant of these is the 
one proposed by Star and Seifert (2006). In this operational definition, flexibility is 
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knowing multiple solution procedures to a problem and having the capacity to 
generate new and more efficient procedures to solve it (Star & Seifert, 2006). Even 
though this definition has had an impact on the research on flexibility (e.g., Rittle-
Johnson & Star, 2007; Star & Rittle-Johnson, 2008; Xu et al., 2017), there are calls 
for a more comprehensive account of flexibility (e.g., Ionescu, 2012) given its 
contribution to efficient problem solving (e.g., Ionescu, 2012; Newton et al., 2010) 

The current paper offers a reflection about flexibility in equation solving that 
contributes to the extension of the definition by Star and Seifert (2006). To this end, 
examples of equation solving are included as a context for the reflection that there is a 
need for another property in the definition, namely the aspect of making connections, 
to deepen both the investigations of flexibility in equation solving in students and its 
provision or fostering in teaching. Connections are used because they are fundamental 
in the teaching and learning of mathematics and enable students to perform 
mathematical tasks. Importantly, when performing transformational activities, 
students make a number of procedural connections.  

Mathematical Connections  

A mathematical connection is an exact relationship between two or more 
mathematical ideas (Businskas, 2009). Several researchers have sought to understand 
the concept of connection and identified types of mathematical connections. One of 
the initial conceptual models for investigations in this field was proposed by 
Businskas (2009). In this model seven types of connections are suggested: alternate 
representations; equivalent representations; common features; inclusion; 
generalisation; implication; and procedures. Other researchers have extended 
Businskas’ model, and recently, Rodríguez-Nieto et al. (2020) refined the existing 
conceptualisations and suggested an extension of the current types of mathematical 
connections by including metaphors. Equivalent representations are the focus of this 
paper.  

Two major registers of representations are defined: treatments; and 
conversions (Gagatsis & Shiakalli, 2004), which are also identified as equivalent and 
alternate representations, respectively (Businskas, 2009). Conversions are 
transformations of representations that consist in changing the register without 
changing the objects being denoted, while treatments are transformations of 
representations, which take place within the same register in which they have been 
formed (Gagatsis & Shiakalli, 2004). For example, the graph of a parabola is an 
alternate representation (conversion) of the function f(x)=ax2+bx+c because the two 
representations are from two different registers (i.e. algebraic and graphic). While 
3+2 is equivalent to 2+3, or f(x)=ax2+bx+c is equivalent to f(x)=a(x – p)2+q since 
both are from the same registers. 

Flexibility in Equation Solving 

The notion of flexibility is colloquially defined as the ability to change according to 
particular circumstances (Star & Seifert, 2006). In mathematics it has a specific 
meaning, and I would like to define it based on Star and Seifert (2006). Think about 
the equations 4(x+1)=8; 4(x+1)+2(x+1)=12; and 4(x+1)+3x+7=8+3x+7 and review 
the solutions to these given by two hypothetical students that are presented in Table 1. 
What do you observe? 
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Table 1: Hypothetical Student Solutions to the Equations (adapted from Star and Seifert, 2006, p.281). 

 
 

In these cases, both students solve the equations correctly. According to Star 
and Seifert (2006), however, Student A creates more innovative solutions to the 
problems and completes all three equations using three different solution procedures. 
Student A divides by 4 as a first step in the first equation; combines the like terms 
x+1 first in the second equation; and recognises and cancels the like terms 3x+7 in the 
final equation. However, Student B uses the same (standard) algorithm on all 
problems: expand; combine; subtract from both; and divide. Student A’s solutions are 
more efficient on all three equations; that is, they require fewer steps. Like Student B, 
Student A has the knowledge of standard algorithms, but Student A has the additional 
capacity to use them in non-standard ways in performing particular types of tasks. 

For Star and Seifert (2006), flexibility in mathematics, then, can be defined as 
having knowledge of multiple solution procedures to a problem, a sense of when each 
way is most efficient, and the capacity to invent or innovate creative new procedures. 
Qualities such as being able to create multiple and efficient solutions to a given 
problem make students more flexible thinkers and problem solvers. Star and Seifert 
(2006) identify “a flexible solver as one who (a) has knowledge of multiple solution 
procedures, and (b) has the capacity to invent or innovate to create new procedures” 
(p.282) accordingly and consider these two as indicators of flexibility in equation 
solving. The present paper suggests extending this operationalisation. It is proposed to 
add a third property to the above definition of a flexible problem solver, namely: (c) 
(a flexible thinker) has the ability to make connections between mathematical ideas 
and concepts. 

In equation solving one of the main big ideas is equivalence. Examples of 
mathematical understanding in terms of algebraic expressions and equations include:  

Algebraic expressions can be named in an infinite number of different but 
equivalent ways. For example: 2(x–12)=2x–24=2x–(28–4) 

A given equation can be represented in an infinite number of different ways that 
have the same solution. For instance, 3x–5=16 and 3x=21 are equivalent 
equations; they have the same solution, 7 (Charles, 2005, p.14). 

In order to become flexible, students must make contact with equivalent 
representations of the given expression or equation.  

Consider the equation below used by Star and Seifert (2006, p.286) to assess 
flexibility, and typically solved in mathematics classes using algebra: 4(x+3)=16x. 
Figure 1 presents a number of different solutions to the equation. Based on Star and 
Seifert’s operationalisation, Student B (less flexible thinker) would solve the equation 
following standard algorithms (e.g., Solution 1), but how would Student A, who is a 
more flexible thinker, solve it? Would Student A see the equation as x+3=4x instead 
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and perform it accordingly, such as Solution 2? Or would Student A represent the 
equation by equating zero and perform the equation accordingly, such as Solution 4? 

 

 
Figure 1: Multiple Solution to the Equation 4(x+3)=16x.   
 
In fact, how more flexible thinkers would solve the problem is ambiguous and implies 
the need to involve other properties of flexibility, namely establishing connections. 
The terms in the equation, and accordingly the equation itself, can be represented by 
its various equivalents. The equivalent representation type of mathematical 
connections is extensively identified in Solutions 1 through 4.  

Here is another equation: 5(x+3)+10x=35+5x (Star & Seifert, 2006, p.286). 
Some solutions to the equation are presented in Figure 2. While in Solution 1 the 
standard algorithms are performed, in Solution 2 each term is divided by 5, and in 
Solution 3 the like terms are cancelled. According to Star and Seifert’s definition, a 
less flexible thinker is supposed to give Solution 1 where standard procedures are 
followed step by step. How more flexible thinkers would solve the problem again is 
ambiguous. In solving the equation, procedural types of connections are established, 
and examples are provided in Figure 2. The equation is represented in different but 
equivalent forms in each solution.  

 

 
Figure 2: Multiple Solution to the Equation 5(x+3)+10x=35+5x. 
 
The examples provided here show that, even though abilities such as being able to 
create multiple and efficient solutions to a given problem are important flexible 
behaviors in equation solving, there should be other qualities. These examples imply 
that linking concepts with broader big ideas is one mechanism involved in flexibility. 
Making connections must, therefore, be considered as a property of flexibility. As 
such, in addition to having knowledge of standard algorithms to perform relevant 
tasks and using that knowledge in non-standard ways to do a better job, more flexible 
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thinkers have the capacity to connect procedures with the broader big ideas or 
concepts (e.g., equivalence).  

Final Remarks 

This paper makes a reflection on Star and Seifert’s (2006) conceptualisation of 
flexibility in equation solving. The reflection is by no means exhaustive. Its main 
purpose is to contribute to the development of the current conceptualisation. 
Specifically, it makes evident that the two properties of flexibility in equation solving 
in Star and Seifert’s operational definition need to be extended. One way of doing this 
is to incorporate an important quality of flexibility, making connections, which is 
fundamental for understanding mathematical concepts. Thus, the incorporation of 
making connections as an additional property of the definition of flexibility in 
equation solving is proposed. It is considered that this extension will allow a better 
analysis of flexibility in relevant investigations and will contribute to teaching and 
learning processes, especially when making connections is considered as a medium 
frequently used by mathematics teachers during their teaching (e.g., Hatisaru, 2020; 
Rodríguez-Nieto et al., 2020).  

The paper opens potential routes to study the issue further. Firstly, this paper 
suggests that when mathematical connections are made in transformational activities, 
they represent a property of flexibility. Studying whether and how this is so may 
provide a more profound way to define and analyse flexibility in transformational 
activities and may also help to foster the use of mathematical connections in teaching. 
It is important to fine-tune this new property into more specific types of mathematical 
connections in transformational activities. Importantly, it is seen that, as Ionescu 
(2012) indicates, a number of variables play a role in flexibility. As well as the ability 
to make mathematical connections, knowledge in the relevant content domain (Zazkis 
& Mamolo, 2011) may influence flexibility, or this knowledge may impact both on 
the ability to make connections and on flexibility. The complex relationships among 
these three variables need further research. Future work could also study how the 
mathematical connections made by teachers in teaching transformational activities 
influence their students’ flexibility in those activities and the connections that the 
students make. Finally, it is believed that these types of future reflections or 
investigations would expand the understanding of the concept and properties of 
flexibility in performing mathematical tasks, as the current paper only focuses on a 
small number of equation solving examples. 
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